Spaces:
Sleeping
Sleeping
import os | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import streamlit as st | |
from langchain.memory import ConversationSummaryBufferMemory | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from datetime import datetime | |
from langchain_core.messages import HumanMessage | |
from dotenv import load_dotenv | |
load_dotenv() | |
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" | |
# Define title and layout | |
st.set_page_config(page_title="Vision Bot", layout="wide") | |
# GOOGLE_API_KEY=os.getenv("GOOGLE_API_KEY") | |
os.environ["GOOGLE_API_KEY"] = "AIzaSyAFPijT_v7G_Gm31QXgcIsqIO-JN4fCFsA" | |
st.title("Vision Bot") | |
llm = ChatGoogleGenerativeAI( | |
model="gemini-1.5-flash", | |
max_tokens=4000 | |
) | |
IMAGE_SAVE_FOLDER = "./uploaded_images" | |
if not os.path.exists(IMAGE_SAVE_FOLDER): | |
os.makedirs(IMAGE_SAVE_FOLDER) | |
st.markdown( | |
""" | |
<style> | |
.sidebar-content { | |
background-color: #f1f3f6; | |
padding: 20px; | |
border-radius: 10px; | |
text-align: left; | |
box-shadow: 0px 0px 10px rgba(0,0,0,0.1); | |
} | |
.st-emotion-cache-janbn0 { | |
flex-direction: row-reverse; | |
text-align: right; | |
} | |
.uploaded-image { | |
border: 2px solid #D1D1D1; | |
border-radius: 8px; | |
margin-top: 10px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Initialize session states | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "llm" not in st.session_state: | |
st.session_state.llm = llm | |
if "rag_memory" not in st.session_state: | |
st.session_state.rag_memory = ConversationSummaryBufferMemory(llm=st.session_state.llm, max_token_limit=5000) | |
if "current_image" not in st.session_state: | |
st.session_state.current_image = None | |
if "last_displayed_image" not in st.session_state: | |
st.session_state.last_displayed_image = None | |
container = st.container() | |
with st.sidebar: | |
st.markdown( | |
""" | |
<div class="sidebar-content"> | |
<h2>Vision Bot</h2> | |
<p>This is Vision Bot where you can ask any question regarding any image. It can perform various tasks such as:</p> | |
<ul> | |
<li><b>Image Captioning</b></li> | |
<li><b>Answering text-related queries inside the image</b></li> | |
<li><b>OCR (Optical Character Recognition)</b></li> | |
<li><b>Image Analysis & Description</b></li> | |
</ul> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Upload image | |
# Upload image | |
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png","webp"], key="image_uploader") | |
# Check if a new image is uploaded | |
if uploaded_image and uploaded_image != st.session_state.current_image: | |
st.session_state.current_image = uploaded_image | |
# Fix image size here | |
st.image(uploaded_image, caption="Newly Uploaded Image", width=300) # Adjust width to a smaller size | |
# Add a system message to mark the new image in the conversation | |
st.session_state.messages.append({ | |
"role": "system", | |
"content": f"New image uploaded: {uploaded_image.name}", | |
"image": uploaded_image | |
}) | |
# Display messages | |
for message in st.session_state.messages: | |
with container.chat_message(message["role"]): | |
if message["role"] == "system" and "image" in message: | |
# Display image in chat history with fixed size | |
st.image(message["image"], width=300) # Adjust width to a smaller size | |
st.write(message["content"]) | |
# Take prompt | |
if prompt := st.chat_input("Enter your query here..."): | |
with container.chat_message("user"): | |
st.write(prompt) | |
# Save user input in session state | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
if st.session_state.current_image: | |
# Save uploaded image to disk | |
image = Image.open(st.session_state.current_image) | |
current_date = datetime.now().strftime("%Y%m%d") | |
image_name = f"{current_date}_{st.session_state.current_image.name}" | |
image_path = os.path.join(IMAGE_SAVE_FOLDER, image_name) | |
image.save(image_path) | |
# Encode image in base64 | |
with open(image_path, "rb") as image_file: | |
encoded_string = base64.b64encode(image_file.read()).decode() | |
# Send image and text to the model | |
chat = HumanMessage( | |
content=[ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_string}"}}, | |
] | |
) | |
else: | |
# Send only text to the model if no image is uploaded | |
chat = HumanMessage(content=prompt) | |
# Get AI response | |
ai_msg = llm.invoke([chat]).content | |
with container.chat_message("assistant"): | |
st.write(ai_msg) | |
# Save the conversation context in memory | |
st.session_state.rag_memory.save_context({'input': prompt}, {'output': ai_msg}) | |
# Append the assistant's message to the session state | |
st.session_state.messages.append({"role": "assistant", "content": ai_msg}) |