Vision-bot / app.py
simran0608's picture
Update app.py
5e19c4d verified
import os
import base64
from io import BytesIO
from PIL import Image
import streamlit as st
from langchain.memory import ConversationSummaryBufferMemory
from langchain_google_genai import ChatGoogleGenerativeAI
from datetime import datetime
from langchain_core.messages import HumanMessage
from dotenv import load_dotenv
load_dotenv()
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# Define title and layout
st.set_page_config(page_title="Vision Bot", layout="wide")
# GOOGLE_API_KEY=os.getenv("GOOGLE_API_KEY")
os.environ["GOOGLE_API_KEY"] = "AIzaSyAFPijT_v7G_Gm31QXgcIsqIO-JN4fCFsA"
st.title("Vision Bot")
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
max_tokens=4000
)
IMAGE_SAVE_FOLDER = "./uploaded_images"
if not os.path.exists(IMAGE_SAVE_FOLDER):
os.makedirs(IMAGE_SAVE_FOLDER)
st.markdown(
"""
<style>
.sidebar-content {
background-color: #f1f3f6;
padding: 20px;
border-radius: 10px;
text-align: left;
box-shadow: 0px 0px 10px rgba(0,0,0,0.1);
}
.st-emotion-cache-janbn0 {
flex-direction: row-reverse;
text-align: right;
}
.uploaded-image {
border: 2px solid #D1D1D1;
border-radius: 8px;
margin-top: 10px;
}
</style>
""",
unsafe_allow_html=True,
)
# Initialize session states
if "messages" not in st.session_state:
st.session_state.messages = []
if "llm" not in st.session_state:
st.session_state.llm = llm
if "rag_memory" not in st.session_state:
st.session_state.rag_memory = ConversationSummaryBufferMemory(llm=st.session_state.llm, max_token_limit=5000)
if "current_image" not in st.session_state:
st.session_state.current_image = None
if "last_displayed_image" not in st.session_state:
st.session_state.last_displayed_image = None
container = st.container()
with st.sidebar:
st.markdown(
"""
<div class="sidebar-content">
<h2>Vision Bot</h2>
<p>This is Vision Bot where you can ask any question regarding any image. It can perform various tasks such as:</p>
<ul>
<li><b>Image Captioning</b></li>
<li><b>Answering text-related queries inside the image</b></li>
<li><b>OCR (Optical Character Recognition)</b></li>
<li><b>Image Analysis & Description</b></li>
</ul>
</div>
""",
unsafe_allow_html=True,
)
# Upload image
# Upload image
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png","webp"], key="image_uploader")
# Check if a new image is uploaded
if uploaded_image and uploaded_image != st.session_state.current_image:
st.session_state.current_image = uploaded_image
# Fix image size here
st.image(uploaded_image, caption="Newly Uploaded Image", width=300) # Adjust width to a smaller size
# Add a system message to mark the new image in the conversation
st.session_state.messages.append({
"role": "system",
"content": f"New image uploaded: {uploaded_image.name}",
"image": uploaded_image
})
# Display messages
for message in st.session_state.messages:
with container.chat_message(message["role"]):
if message["role"] == "system" and "image" in message:
# Display image in chat history with fixed size
st.image(message["image"], width=300) # Adjust width to a smaller size
st.write(message["content"])
# Take prompt
if prompt := st.chat_input("Enter your query here..."):
with container.chat_message("user"):
st.write(prompt)
# Save user input in session state
st.session_state.messages.append({"role": "user", "content": prompt})
if st.session_state.current_image:
# Save uploaded image to disk
image = Image.open(st.session_state.current_image)
current_date = datetime.now().strftime("%Y%m%d")
image_name = f"{current_date}_{st.session_state.current_image.name}"
image_path = os.path.join(IMAGE_SAVE_FOLDER, image_name)
image.save(image_path)
# Encode image in base64
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
# Send image and text to the model
chat = HumanMessage(
content=[
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_string}"}},
]
)
else:
# Send only text to the model if no image is uploaded
chat = HumanMessage(content=prompt)
# Get AI response
ai_msg = llm.invoke([chat]).content
with container.chat_message("assistant"):
st.write(ai_msg)
# Save the conversation context in memory
st.session_state.rag_memory.save_context({'input': prompt}, {'output': ai_msg})
# Append the assistant's message to the session state
st.session_state.messages.append({"role": "assistant", "content": ai_msg})