File size: 9,563 Bytes
e040241 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import streamlit as st
import pandas as pd
from transformers import pipeline
import torch # For GPU checks
import numpy as np
from groq import Groq
import os
import time
# Set page config
st.set_page_config(
page_title="Restaurant Review Analyzer π½οΈ",
page_icon="π",
layout="wide"
)
# Custom CSS
st.markdown("""
<style>
.main {
padding: 2rem;
}
.stProgress > div > div > div {
background-color: #1f77b4;
}
.metric-card {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
</style>
""", unsafe_allow_html=True)
def setup_classifier():
"""Initialize the zero-shot classification pipeline with GPU support if available"""
with st.spinner('Loading classification model... βοΈ'):
device = 0 if torch.cuda.is_available() else -1 # Use GPU if available
return pipeline(
"zero-shot-classification",
model="joeddav/xlm-roberta-large-xnli",
device=device
)
def create_aspect_labels():
"""Create labels for all aspects with positive/negative sentiment"""
aspects = [
"food quality",
"service",
"ambiance",
"price",
"cleanliness",
"portion size",
"wait time",
"menu variety"
]
sentiment_labels = []
for aspect in aspects:
sentiment_labels.extend([
f"positive {aspect}",
f"negative {aspect}"
])
return aspects, sentiment_labels
def classify_review(classifier, review, sentiment_labels):
"""Classify a single review across all aspects and sentiments"""
if pd.isna(review) or not isinstance(review, str):
return {label: 0 for label in sentiment_labels}
try:
result = classifier(
review,
sentiment_labels,
multi_label=True
)
return dict(zip(result['labels'], result['scores']))
except Exception as e:
st.error(f"Error processing review: {e}")
return {label: 0 for label in sentiment_labels}
def format_summary_for_llm(summary_df):
"""Format the classification summary into a clear text prompt"""
summary_text = "Restaurant Reviews Analysis Summary:\n\n"
sentiment_analysis = {}
for aspect in summary_df.index:
pos = summary_df.loc[aspect, 'positive_mentions']
neg = summary_df.loc[aspect, 'negative_mentions']
total = pos + neg
if total > 0:
pos_percent = (pos / total) * 100
neg_percent = (neg / total) * 100
difference = pos_percent - neg_percent
sentiment_analysis[aspect] = {
'difference': difference,
'positive_percent': pos_percent,
'negative_percent': neg_percent,
'total_mentions': total
}
for aspect, metrics in sentiment_analysis.items():
summary_text += f"{aspect}:\n"
summary_text += f"- Total Mentions: {metrics['total_mentions']}\n"
summary_text += f"- Positive Mentions: {metrics['positive_percent']:.1f}%\n"
summary_text += f"- Negative Mentions: {metrics['negative_percent']:.1f}%\n"
summary_text += f"- Sentiment Difference: {metrics['difference']:.1f}%\n"
summary_text += "\n"
return summary_text
def generate_insights(groq_client, summary_text):
"""Generate insights using Groq API"""
prompt = f"""You are an expert restaurant consultant analyzing customer feedback data.
Based on the following customer review analysis summary, provide actionable insights
and recommendations for the restaurant owner. When analyzing the data:
- If an aspect has a positive difference of 0.5% or more, consider it a strength
- If an aspect has a negative difference of 0.5% or more, consider it an area for improvement
- For differences smaller than 0.5%, consider the aspect neutral or mixed
- Pay special attention to aspects with high total mentions as they represent stronger customer sentiment
Analysis Data:
{summary_text}
Please provide:
1. Key Strengths: What's working well (aspects with >0.5% positive difference)
2. Areas for Improvement: What needs attention (aspects with >0.5% negative difference)
3. Mixed Reception Areas: Aspects with minimal difference (<0.5%) between positive and negative
4. Actionable Recommendations: Specific steps based on the analysis
5. Priority Actions: What should be addressed first, considering both sentiment differences and total mention count
Format your response in clear sections with bullet points where appropriate.
Add relevant emojis to make the response more engaging.
"""
try:
with st.spinner('Generating insights... π€'):
chat_completion = groq_client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="mixtral-8x7b-32768",
temperature=0.7,
max_tokens=1500,
)
return chat_completion.choices[0].message.content
except Exception as e:
st.error(f"Error generating insights: {str(e)}")
return None
def main():
# Header
st.title("π½οΈ Restaurant Review Analyzer")
st.markdown("### Transform your customer feedback into actionable insights! π")
# Sidebar
st.sidebar.header("π Configuration")
# File upload
uploaded_file = st.sidebar.file_uploader("Upload your CSV file", type=['csv'])
if uploaded_file is not None:
# Read CSV
try:
df = pd.read_csv(uploaded_file)
df.columns = df.columns.str.strip()
# Validate 'Review' column
if 'Review' not in df.columns:
st.error("β 'Review' column not found in the CSV file!")
return
# Show sample of uploaded data
st.subheader("π Sample Reviews")
st.dataframe(df[['Review']].head(5), use_container_width=True)
# Process reviews
if st.button("π Analyze Reviews"):
# Initialize classifier
classifier = setup_classifier()
aspects, sentiment_labels = create_aspect_labels()
# Process reviews with progress bar
results = []
progress_bar = st.progress(0)
status_text = st.empty()
for idx, review in enumerate(df['Review'].head(30)):
status_text.text(f"Processing review {idx + 1}/30...")
scores = classify_review(classifier, review, sentiment_labels)
results.append(scores)
progress_bar.progress((idx + 1) / 30)
results_df = pd.DataFrame(results)
# Analyze results
summary = pd.DataFrame()
for aspect in aspects:
pos_col = f"positive {aspect}"
neg_col = f"negative {aspect}"
summary.loc[aspect, 'positive_mentions'] = (results_df[pos_col] > 0.5).sum()
summary.loc[aspect, 'negative_mentions'] = (results_df[neg_col] > 0.5).sum()
summary.loc[aspect, 'avg_positive_score'] = results_df[pos_col].mean()
summary.loc[aspect, 'avg_negative_score'] = results_df[neg_col].mean()
# Display summary in columns
st.subheader("π Analysis Summary")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### π Positive Mentions")
for aspect in aspects:
st.metric(
label=aspect.title(),
value=f"{summary.loc[aspect, 'positive_mentions']} reviews",
delta=f"{summary.loc[aspect, 'avg_positive_score']:.2%} avg. confidence"
)
with col2:
st.markdown("#### π Negative Mentions")
for aspect in aspects:
st.metric(
label=aspect.title(),
value=f"{summary.loc[aspect, 'negative_mentions']} reviews",
delta=f"{summary.loc[aspect, 'avg_negative_score']:.2%} avg. confidence",
delta_color="inverse"
)
# Generate insights
groq_client = Groq(api_key="groq_api_key")
summary_text = format_summary_for_llm(summary)
insights = generate_insights(groq_client, summary_text)
if insights:
st.subheader("π‘ Key Insights and Recommendations")
st.markdown(insights)
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else:
# Show welcome message and instructions
st.markdown("""
### π Welcome to the Restaurant Review Analyzer!
To get started:
1. π Upload your CSV file containing customer reviews
2. π Make sure your file has a 'Review' column
3. π Click 'Analyze Reviews' to process the data
4. π Get detailed insights and recommendations
The analyzer will process the reviews to provide quick insights!
""")
if __name__ == "__main__":
main()
|