Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +107 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from paddleocr import PaddleOCR
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain.output_parsers import PydanticOutputParser
|
6 |
+
from langchain_core.prompts import PromptTemplate
|
7 |
+
from pydantic import BaseModel, Field
|
8 |
+
import fitz
|
9 |
+
import json
|
10 |
+
from PIL import Image
|
11 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='es')
|
12 |
+
|
13 |
+
st.set_page_config(layout="wide")
|
14 |
+
|
15 |
+
class CarInfoEntity(BaseModel):
|
16 |
+
dealer_name: str = Field(description="Nombre del concesionario o empresa.")
|
17 |
+
dealer_address: str = Field(description="Direcci贸n f铆sica del concesionario.")
|
18 |
+
tax_id: str = Field(description="N煤mero de identificaci贸n fiscal del concesionario.")
|
19 |
+
contact_phone: str = Field(description="N煤mero de tel茅fono principal para contactar con el concesionario.")
|
20 |
+
contact_fax: str = Field(description="N煤mero de fax del concesionario.")
|
21 |
+
contact_email: str = Field(description="Direcci贸n de correo electr贸nico para consultas.")
|
22 |
+
website_url: str = Field(description="Sitio web oficial del concesionario.")
|
23 |
+
operating_hours: str = Field(description="Horario habitual de atenci贸n del concesionario.")
|
24 |
+
saturday_hours: str = Field(description="Horario de atenci贸n espec铆fico para los s谩bados.")
|
25 |
+
order_date: str = Field(description="Fecha en que se realiz贸 el pedido.")
|
26 |
+
order_number: str = Field(description="Identificador 煤nico del pedido.")
|
27 |
+
sales_rep: str = Field(description="Nombre del vendedor que maneja la transacci贸n.")
|
28 |
+
customer_full_name: str = Field(description="Nombre completo del comprador.")
|
29 |
+
customer_address: str = Field(description="Direcci贸n del comprador.")
|
30 |
+
customer_city: str = Field(description="Ciudad donde reside el comprador.")
|
31 |
+
customer_postal_code: str = Field(description="C贸digo postal de la direcci贸n del comprador.")
|
32 |
+
customer_province: str = Field(description="Provincia donde se encuentra el comprador.")
|
33 |
+
customer_id: str = Field(description="N煤mero de identificaci贸n del comprador (NIF).")
|
34 |
+
customer_phone: str = Field(description="N煤mero de tel茅fono del comprador.")
|
35 |
+
vehicle_description: str = Field(description="Descripci贸n del veh铆culo que se est谩 comprando, incluyendo marca, modelo y a帽o.")
|
36 |
+
vehicle_color: str = Field(description="Color del veh铆culo.")
|
37 |
+
vehicle_price: str = Field(description="Precio total del veh铆culo, incluyendo impuestos.")
|
38 |
+
|
39 |
+
model = ChatGroq(
|
40 |
+
model="llama-3.1-70b-versatile",
|
41 |
+
temperature=0,
|
42 |
+
max_tokens=None,
|
43 |
+
timeout=None,
|
44 |
+
max_retries=2,
|
45 |
+
api_key='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'
|
46 |
+
)
|
47 |
+
|
48 |
+
os.environ['GROQ_API_KEY'] = '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'
|
49 |
+
|
50 |
+
entity = ['dealer_name', 'dealer_address', 'tax_id', 'contact_phone', 'contact_fax', 'contact_email', 'website_url',
|
51 |
+
'operating_hours', 'saturday_hours', 'order_date', 'order_number', 'sales_rep',
|
52 |
+
'customer_full_name', 'customer_address', 'customer_city', 'customer_postal_code',
|
53 |
+
'customer_province', 'customer_id','customer_phone', 'vehicle_description','vehicle_color','vehicle_price']
|
54 |
+
|
55 |
+
# Streamlit App
|
56 |
+
st.title("Vehicle Information Extractor")
|
57 |
+
st.write("Upload a PDF file to extract vehicle information.")
|
58 |
+
|
59 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
60 |
+
|
61 |
+
if uploaded_file is not None:
|
62 |
+
with open("temp.pdf", "wb") as f:
|
63 |
+
f.write(uploaded_file.read())
|
64 |
+
|
65 |
+
col1, col2 = st.columns(2)
|
66 |
+
|
67 |
+
with col1:
|
68 |
+
doc = fitz.open("temp.pdf")
|
69 |
+
st.write("Uploaded PDF:")
|
70 |
+
for page_num in range(len(doc)):
|
71 |
+
page = doc.load_page(page_num)
|
72 |
+
pix = page.get_pixmap()
|
73 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
74 |
+
st.image(img, caption=f"Page {page_num+1}", use_column_width=True)
|
75 |
+
|
76 |
+
content = ocr.ocr("temp.pdf")
|
77 |
+
|
78 |
+
extracted_text = []
|
79 |
+
for page in content:
|
80 |
+
for result in page:
|
81 |
+
text = result[1][0]
|
82 |
+
extracted_text.append(text)
|
83 |
+
|
84 |
+
all_text = " ".join(extracted_text)
|
85 |
+
|
86 |
+
prompt_text = """Task: Analyze the {all_text} and find out given entity value:{entity} from the {all_text}:
|
87 |
+
|
88 |
+
Output Format: A table with the entity and value. First column contains the {entity} and second column contains the value fetched from the {all_text}.
|
89 |
+
|
90 |
+
Do not include any additional explanations or unnecessary details.
|
91 |
+
{format_instructions}"""
|
92 |
+
|
93 |
+
parser = PydanticOutputParser(pydantic_object=CarInfoEntity)
|
94 |
+
|
95 |
+
prompt = PromptTemplate(
|
96 |
+
template=prompt_text,
|
97 |
+
input_variables=["all_text", "entity"],
|
98 |
+
partial_variables={"format_instructions": parser.get_format_instructions()},
|
99 |
+
)
|
100 |
+
|
101 |
+
chain = prompt | model | parser
|
102 |
+
|
103 |
+
output = chain.invoke({"all_text": all_text, "entity": entity})
|
104 |
+
|
105 |
+
with col2:
|
106 |
+
st.write("Extracted Vehicle Information (Table):")
|
107 |
+
st.table(output)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
paddleocr==2.8.1
|
2 |
+
langchain==0.3.3
|
3 |
+
paddlepaddle==2.6.2
|
4 |
+
langchain_groq==0.2.0
|
5 |
+
PyMuPDF==1.24.11
|
6 |
+
pillow==10.4.0
|
7 |
+
streamlit==1.39.0
|