Spaces:
Running
Running
import os | |
import streamlit as st | |
from paddleocr import PaddleOCR | |
from langchain_groq import ChatGroq | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_core.prompts import PromptTemplate | |
from pydantic import BaseModel, Field | |
import fitz | |
import json | |
from PIL import Image | |
ocr = PaddleOCR(use_angle_cls=True, lang='es') | |
st.set_page_config(layout="wide") | |
class CarInfoEntity(BaseModel): | |
dealer_name: str = Field(description="Nombre del concesionario o empresa.") | |
dealer_address: str = Field(description="Direcci贸n f铆sica del concesionario.") | |
tax_id: str = Field(description="N煤mero de identificaci贸n fiscal del concesionario.") | |
contact_phone: str = Field(description="N煤mero de tel茅fono principal para contactar con el concesionario.") | |
contact_fax: str = Field(description="N煤mero de fax del concesionario.") | |
contact_email: str = Field(description="Direcci贸n de correo electr贸nico para consultas.") | |
website_url: str = Field(description="Sitio web oficial del concesionario.") | |
operating_hours: str = Field(description="Horario habitual de atenci贸n del concesionario.") | |
saturday_hours: str = Field(description="Horario de atenci贸n espec铆fico para los s谩bados.") | |
order_date: str = Field(description="Fecha en que se realiz贸 el pedido.") | |
order_number: str = Field(description="Identificador 煤nico del pedido.") | |
sales_rep: str = Field(description="Nombre del vendedor que maneja la transacci贸n.") | |
customer_full_name: str = Field(description="Nombre completo del comprador.") | |
customer_address: str = Field(description="Direcci贸n del comprador.") | |
customer_city: str = Field(description="Ciudad donde reside el comprador.") | |
customer_postal_code: str = Field(description="C贸digo postal de la direcci贸n del comprador.") | |
customer_province: str = Field(description="Provincia donde se encuentra el comprador.") | |
customer_id: str = Field(description="N煤mero de identificaci贸n del comprador (NIF).") | |
customer_phone: str = Field(description="N煤mero de tel茅fono del comprador.") | |
vehicle_description: str = Field(description="Descripci贸n del veh铆culo que se est谩 comprando, incluyendo marca, modelo y a帽o.") | |
vehicle_color: str = Field(description="Color del veh铆culo.") | |
vehicle_price: str = Field(description="Precio total del veh铆culo, incluyendo impuestos.") | |
model = ChatGroq( | |
model="llama-3.3-70b-versatile", | |
temperature=0, | |
max_tokens=None, | |
timeout=None, | |
max_retries=2 | |
) | |
entity = ['dealer_name', 'dealer_address', 'tax_id', 'contact_phone', 'contact_fax', 'contact_email', 'website_url', | |
'operating_hours', 'saturday_hours', 'order_date', 'order_number', 'sales_rep', | |
'customer_full_name', 'customer_address', 'customer_city', 'customer_postal_code', | |
'customer_province', 'customer_id','customer_phone', 'vehicle_description','vehicle_color','vehicle_price'] | |
# Streamlit App | |
st.title("Vehicle Information Extractor") | |
st.write("Upload a PDF file to extract vehicle information.") | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
use_default = st.checkbox("Use Default Pdf") | |
doc = None | |
if use_default: | |
default_pdf_path = "pedido V.O.pdf" | |
if os.path.exists(default_pdf_path): | |
print("Present") | |
doc = fitz.open(default_pdf_path) | |
st.write("Using default PDF:") | |
else: | |
st.error("Default PDF not found.") | |
else: | |
if uploaded_file is not None: | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.read()) | |
doc = fitz.open("temp.pdf") | |
st.write("Uploaded PDF:") | |
if doc: | |
col1, col2 = st.columns(2) | |
with col1: | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
pix = page.get_pixmap() | |
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) | |
st.image(img, caption=f"Page {page_num + 1}", use_column_width=True) | |
# Perform OCR | |
ocr_result = ocr.ocr(default_pdf_path if use_default else "temp.pdf") | |
extracted_text = [] | |
for page in ocr_result: | |
for result in page: | |
text = result[1][0] | |
extracted_text.append(text) | |
all_text = " ".join(extracted_text) | |
prompt_text = """Task: Analyze the {all_text} and find out given entity value:{entity} from the {all_text}: | |
Output Format: A table with the entity and value. First column contains the {entity} and second column contains the value fetched from the {all_text}. | |
Do not include any additional explanations or unnecessary details. | |
{format_instructions}""" | |
parser = PydanticOutputParser(pydantic_object=CarInfoEntity) | |
prompt = PromptTemplate( | |
template=prompt_text, | |
input_variables=["all_text", "entity"], | |
partial_variables={"format_instructions": parser.get_format_instructions()}, | |
) | |
chain = prompt | model | parser | |
output = chain.invoke({"all_text": all_text, "entity": entity}) | |
with col2: | |
st.write("Extracted Vehicle Information (Table):") | |
st.table(output) | |