File size: 11,141 Bytes
81eeead
 
 
 
 
 
 
 
 
 
 
 
 
 
c88ef2e
81eeead
 
 
 
 
8e2b98b
81eeead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b3ce7
81eeead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58b3ce7
81eeead
c88ef2e
 
81eeead
 
 
 
c88ef2e
 
 
 
81eeead
 
 
 
 
 
 
 
8e2b98b
 
 
 
 
 
 
 
81eeead
8e2b98b
1e8402a
 
8e2b98b
81eeead
 
 
1e8402a
 
 
 
 
 
81eeead
 
 
 
 
 
 
 
 
 
0ab41a5
81eeead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469744b
 
81eeead
 
 
 
 
8e2b98b
81eeead
 
 
 
 
 
 
8e2b98b
81eeead
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469744b
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import requests
import pandas as pd
import datetime
import pytz
import numpy as np
import math
import ta

class StockDataFetcher:
    def __init__(self):

        self.base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/"
        self.base_fno_url = "https://groww.in/v1/api/stocks_fo_data/v3/charting_service/chart/exchange/NSE/segment/FNO/"
        self.latest_stock_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_prices/exchange/NSE/segment/CASH/"
        self.latest_index_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_indices/exchange/NSE/segment/CASH/"
        self.latest_option_price = "https://groww.in/v1/api/stocks_fo_data/v1/tr_live_prices/exchange/NSE/segment/FNO/"
        self.option_chain = "https://groww.in/v1/api/option_chain_service/v1/option_chain/derivatives/"
        self.search_url = "https://groww.in/v1/api/search/v1/entity"
        self.news_url = "https://groww.in/v1/api/stocks_company_master/v1/company_news/groww_contract_id/"
        self.all_stocks_url = "https://groww.in/v1/api/stocks_data/v1/all_stocks"
        self.nearest_expiries = "https://groww.in/v1/api/stocks_fo_data/v1/nearest_expiries?instrumentType=INDEX"

        self.indian_timezone = pytz.timezone('Asia/Kolkata')
        self.utc_timezone = pytz.timezone('UTC')
        self.headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
        }

    def _get_time_range(self, days=7):
        current_time = datetime.datetime.now(self.indian_timezone)
        start_time = current_time - datetime.timedelta(days=days)
        start_time_utc = start_time.astimezone(pytz.utc)
        current_time_utc = current_time.astimezone(pytz.utc)
        start_time_millis = int(start_time_utc.timestamp() * 1000)
        end_time_millis = int(current_time_utc.timestamp() * 1000)
        return start_time_millis, end_time_millis

    def fetch_stock_data(self, symbol, interval=15, days=7):
        start_time, end_time = self._get_time_range(days)
        params = {
            'endTimeInMillis': end_time,
            'intervalInMinutes': interval,
            'startTimeInMillis': start_time,
        }
        try:
            print("Downloading data of", symbol.upper())
            if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
              response = requests.get(self.base_fno_url + symbol.upper(), params=params, headers=self.headers)
            else:
              response = requests.get(self.base_url + symbol.upper(), params=params, headers=self.headers)
            response.raise_for_status()
            data = response.json()
            columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
            for row in data['candles']:
                row[0] = datetime.datetime.utcfromtimestamp(row[0])
            df = pd.DataFrame(data['candles'], columns=columns)
            df['Date'] = pd.to_datetime(df['Date'])
            df['Date'] = df['Date'].dt.tz_localize(self.utc_timezone).dt.tz_convert(self.indian_timezone)
            return df
        except requests.exceptions.RequestException as e:
            print(f"Error during API request: {e}")
            return None

    def fetch_latest_price(self, symbol):
      try:
        if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
          response = requests.get(self.latest_option_price + symbol.upper() + "/latest", headers=self.headers)
        elif symbol.upper() == "NIFTY" or symbol.upper() == "BANKNIFTY":
          response = requests.get(self.latest_index_price + symbol.upper() + "/latest", headers=self.headers)
        else:
          response = requests.get(self.latest_stock_price + symbol.upper() + "/latest", headers=self.headers)
        if response.status_code == 200:
            data = response.json()
            if 'ltp' in data:
              latest_price = data['ltp']
            else:
              latest_price = data['value']
            return latest_price
        else:
            print(f"Failed to fetch data. Status code: {response.status_code}")
            return None
      except Exception as e:
          print(f"An error occurred: {e}")
          return None

    def fetch_nearest_expiries(self):
      try:
          response = requests.get(self.nearest_expiries, headers=self.headers).json()
          return response
      except Exception as e:
          print(f"An error occurred: {e}")
          return None

    def fetch_option_chain(self, symbol):

      if symbol.upper() == "BANKNIFTY":
        symbol = "nifty-bank"

      response = requests.get(self.option_chain + symbol, headers=self.headers)
      data = response.json()['optionChain']['optionChains']
      ltp = response.json()['livePrice']['value']

      if symbol == "nifty-bank":
        index_ltp = requests.get(self.latest_index_price + "BANKNIFTY" + "/latest", headers=self.headers).json()['value']

      if symbol.upper() == "NIFTY":
        index_ltp = requests.get(self.latest_index_price + "NIFTY" + "/latest", headers=self.headers).json()['value']

      chain = []
      for i in range(len(data)):
        chain.append({"Symbol_CE": data[i]["callOption"]['growwContractId'], "OI_CALL": data[i]["callOption"]['openInterest'] , "CALL": data[i]["callOption"]['ltp'], "strikePrice": data[i]['strikePrice']/100, "PUT": data[i]["putOption"]['ltp'], "OI_PUT": data[i]["putOption"]['openInterest'], "Symbol_PE": data[i]["putOption"]['growwContractId']}
        )

      chain = pd.DataFrame(chain)
      index = chain[(chain['strikePrice'] >= ltp)].head(1).index[0]
      chain = chain[index-6:index+7].reset_index(drop=True)
      optin_exp = chain['Symbol_CE'][0][:-7]
      return chain, optin_exp, index_ltp

    def search_entity(self, symbol, entity=None, page=0, size=1, app=False):
      params = {
          'app': app,
          'entity_type': entity,
          'page': page,
          'q': f"{symbol}",
          'size': size
      }
      try:
          response = requests.get(self.search_url, params=params, headers=self.headers)
          response.raise_for_status()
          data = response.json()
          entity = data['content'][0]
          return {"ID": entity['id'], "title": entity['title'], "NSE_Symbol": entity['nse_scrip_code'], "contract_id" : entity["groww_contract_id"]}
      except requests.exceptions.RequestException as e:
          return None

    def fetch_stock_news(self, symbol, page=1, size=1):
      params = {
          "page" : page,
          "size" : size
      }
      try:
        symbol_id = self.search_entity(symbol.upper())['contract_id']
        response = requests.get(self.news_url + symbol_id, headers=self.headers, params=params).json()['results']
        news = []
        for i in range(len(response)):
          Title = response[i]['title']
          Summary = response[i]['summary']
          Url = response[i]['url']
          Date = response[i]['pubDate']
          Source = response[i]['source']
          CompanyName = response[i]['companies'][0]['companyName']
          ScripCode = response[i]['companies'][0]['nseScripCode']
          BlogUrl = response[i]['companies'][0]['blogUrl']
          Topics = response[i]['topics'][0]

          news.append({
              'title': Title,
              'summary': Summary,
              'url': Url,
              'pubDate': Date,
              'source': Source,
              'companyName': CompanyName,
              'symbol': ScripCode,
              'blogUrl': BlogUrl,
              'topics': Topics
          })

        news_table = pd.DataFrame(news)
        return news_table
      except:
        return None

    def fetch_all_stock(self):
      try:
        params = {
            'listFilters': {'INDUSTRY': [], 'INDEX': []},
            'INDEX': ["BSE 100", "Nifty 100", "Nifty Bank", "Nifty Next 50", "Nifty Midcap 100", "SENSEX", "Nifty 50"],
            'INDUSTRY': [],
            'objFilters': {'CLOSE_PRICE': {'max': 100000, 'min': 0}, 'MARKET_CAP': {'min': 0, 'max': 2000000000000000}},
            'CLOSE_PRICE': {'max': 100000, 'min': 0},
            'MARKET_CAP': {'min': 0, 'max': 2000000000000000},
            'size': "1000",
            'sortBy': "NA",
            'sortType': "ASC"
        }

        all_data = []
        page = 0
        while True:
            params['page'] = str(page)
            response = requests.post(self.all_stocks_url, headers=self.headers, json=params)
            data = response.json()
            records = data.get('records', [])
            if not records:
                break
            all_data.extend(records)
            page += 1

        df = pd.DataFrame(all_data)
        live_price_df = pd.json_normalize(df['livePriceDto'])
        df = pd.concat([df, live_price_df], axis=1)
        df = df.drop(columns=['livePriceDto'])
        return df
      except:
        return None

    def realtime_signal(self, symbol, intervals=15, days=10):

      rounding_value = None
      signal_status = None

      if symbol.upper() == "NIFTY":
        index_symbol = "NIFTY"
        rounding_value = 50

      elif symbol.upper() == "BANKNIFTY":
        index_symbol = "BANKNIFTY"
        rounding_value = 100

      else:
        pass

      stock_data = self.fetch_stock_data(index_symbol, intervals, days)
      chain, exp, index_ltp = self.fetch_option_chain(symbol.upper())
      stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14)
      stock_data = stock_data.drop(columns=['Volume'])
      stock_data['Prev_RSI'] = stock_data['RSI'].shift(1)
      stock_data['Signal'] = 0
      call_condition = (stock_data['RSI'] > 60) & (stock_data['Prev_RSI'] < 60)
      put_condition = (stock_data['RSI'] < 40) & (stock_data['Prev_RSI'] > 40)
      stock_data.loc[call_condition, 'Signal'] = 1
      stock_data.loc[put_condition, 'Signal'] = 2
      stock_data = stock_data.dropna().reset_index(drop=True)

      def floor_to_nearest(value, nearest):
          return math.ceil(value / nearest) * nearest

      stock_data['Option'] = stock_data['Close'].apply(lambda x: floor_to_nearest(x, rounding_value))

      stock_data['direction'] = np.where(stock_data['Signal'] == 2, "PE", np.where(stock_data['Signal'] == 1, "CE", ""))
      stock_data['symbol'] = exp + stock_data['Option'].astype(str) + stock_data['direction']
      stock_data = stock_data.tail(1).to_dict(orient="records")[0]
      if stock_data['direction'] == "PE" or stock_data['direction'] == "CE":
        signal_status = True
        signal_data = self.fetch_stock_data(stock_data['symbol'], intervals, 1).tail(1).to_dict(orient="records")[0]
        print(signal_data)
        entry_price = signal_data['High']
        stoploss = signal_data['Low']
        response = {"signal_status" : signal_status, "entry_price" : entry_price, "stoploss" : stoploss,  "index_candle": stock_data, "signal_data": signal_data}
      else:
        signal_status = False
        response = {"signal_status" : "No signals"}
      return response