Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks, TasksMultimodal | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
auto_eval_column_dict_multimodal = [] | |
# Init | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)]) | |
#Scores | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
# Model information | |
auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)]) | |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)]) | |
for task in TasksMultimodal: | |
auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) | |
auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)]) | |
auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)]) | |
auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
track = ColumnContent("track", "str", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |
BENCHMARK_COLS_MULTIMODAL = [t.value.col_name for t in TasksMultimodal] |