Spaces:
Running
Running
File size: 2,869 Bytes
63cb7f9 de60bd6 63cb7f9 de60bd6 9b785e1 de60bd6 63cb7f9 de60bd6 63cb7f9 9b785e1 63cb7f9 9b785e1 63cb7f9 de60bd6 63cb7f9 fb22d4b 63cb7f9 fb22d4b 63cb7f9 9b785e1 63cb7f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import json
import os
from datetime import datetime, timezone
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model_name: str,
preds_path: str,
track: str,
revision: str,
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = ""
model_path = model_name
if "/" in model_name:
user_name = model_name.split("/")[0]
model_path = model_name.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if preds_path is None or preds_path == "":
return styled_error("Please enter a URL where your predictions file can be downloaded.")
if track is None:
return styled_error("Please select a track.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model_name, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
modelcard_OK, error_msg = check_model_card(model_name)
if not modelcard_OK:
return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model_name": model_name,
"preds_path": preds_path,
"track": track,
"revision": revision,
"status": "PENDING",
"submitted_time": current_time,
"private": False,
}
# Check for duplicate submission
if f"{model_name}_{revision}_{track}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{track}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|