File size: 10,674 Bytes
63cb7f9
 
 
 
 
de60bd6
63cb7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d561ee
63cb7f9
 
e1db744
4ab7a4f
63cb7f9
 
 
 
6a3b9c1
63cb7f9
 
5833731
 
e1db744
98488bf
5833731
 
3d10b83
8f1a599
6a3b9c1
4d561ee
 
63cb7f9
 
 
4d561ee
63cb7f9
 
 
 
 
de60bd6
63cb7f9
 
 
 
 
 
 
 
 
 
 
 
 
4d561ee
63cb7f9
 
 
 
 
a5487ef
 
 
 
 
 
1bbb1d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5487ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, TasksMultimodal

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
auto_eval_column_dict = []
auto_eval_column_dict_multimodal = []
# Init
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
#Scores
for task in Tasks:
    auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# Model information
auto_eval_column_dict.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

auto_eval_column_dict_multimodal.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
auto_eval_column_dict_multimodal.append(["hf_repo", ColumnContent, ColumnContent("HF Repo", "str", False)])
auto_eval_column_dict_multimodal.append(["track", ColumnContent, ColumnContent("Track", "markdown", False)])
for task in TasksMultimodal:
    auto_eval_column_dict_multimodal.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
    if task.value.col_name in ("ewok", "EWoK"):   # make sure this appears in the right order
        auto_eval_column_dict_multimodal.append(["text_average", ColumnContent, ColumnContent("Text Average", "number", True)])
auto_eval_column_dict_multimodal.append(["vision_average", ColumnContent, ColumnContent("Vision Average", "number", True)])
auto_eval_column_dict_multimodal.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict_multimodal.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])

# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumnMultimodal = make_dataclass("AutoEvalColumnMultimodal", auto_eval_column_dict_multimodal, frozen=True)

## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    track = ColumnContent("track", "str", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
COLS_MULTIMODAL = [c.name for c in fields(AutoEvalColumnMultimodal) if not c.hidden]

EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]
BENCHMARK_COLS_MULTIMODAL = [t.value.col_name for t in TasksMultimodal]

TEXT_TASKS = {
    "glue": ["cola", "sst2", "mrpc", "qqp", "mnli", "mnli-mm", "qnli", "rte",
            "boolq", "multirc", "wsc"],
    # Lots of BLiMP tasks – use verifier function below to see if you've included everything.
    "blimp": ["adjunct_island","anaphor_gender_agreement","anaphor_number_agreement","animate_subject_passive","animate_subject_trans",
        "causative","complex_NP_island","coordinate_structure_constraint_complex_left_branch","coordinate_structure_constraint_object_extraction","determiner_noun_agreement_1",
        "determiner_noun_agreement_2","determiner_noun_agreement_irregular_1","determiner_noun_agreement_irregular_2","determiner_noun_agreement_with_adjective_1",
        "determiner_noun_agreement_with_adj_2","determiner_noun_agreement_with_adj_irregular_1","determiner_noun_agreement_with_adj_irregular_2","distractor_agreement_relational_noun",
        "distractor_agreement_relative_clause","drop_argument","ellipsis_n_bar_1","ellipsis_n_bar_2",
        "existential_there_object_raising", "existential_there_quantifiers_1",
        "existential_there_quantifiers_2", "existential_there_subject_raising", "expletive_it_object_raising",
        "inchoative", "intransitive","irregular_past_participle_adjectives", "irregular_past_participle_verbs",
        "irregular_plural_subject_verb_agreement_1", "irregular_plural_subject_verb_agreement_2", "left_branch_island_echo_question", "left_branch_island_simple_question",
        "matrix_question_npi_licensor_present", "npi_present_1", "npi_present_2", "only_npi_licensor_present", "only_npi_scope", "passive_1", "passive_2",
        "principle_A_case_1", "principle_A_case_2", "principle_A_c_command", "principle_A_domain_1",
        "principle_A_domain_2", "principle_A_domain_3", "principle_A_reconstruction", "regular_plural_subject_verb_agreement_1",
        "regular_plural_subject_verb_agreement_2", "sentential_negation_npi_licensor_present", "sentential_negation_npi_scope", "sentential_subject_island",
        "superlative_quantifiers_1", "superlative_quantifiers_2", "tough_vs_raising_1", "tough_vs_raising_2",
        "transitive", "wh_island", "wh_questions_object_gap", "wh_questions_subject_gap",
        "wh_questions_subject_gap_long_distance", "wh_vs_that_no_gap", "wh_vs_that_no_gap_long_distance", "wh_vs_that_with_gap",
        "wh_vs_that_with_gap_long_distance"
    ],
    "blimp_supplement": ["hypernym", "qa_congruence_easy", "qa_congruence_tricky",
                "subject_aux_inversion", "turn_taking"],
    "ewok": ["agent-properties", "material-dynamics", "material-properties", "physical-dynamics",
            "physical-interactions", "physical-relations", "quantitative-properties",
            "social-interactions", "social-properties", "social-relations", "spatial-relations"]
}

VISION_TASKS = {
    "vqa": ["vqa"],
    "winoground": ["winoground"],
    "devbench": ["lex-viz_vocab", "gram-trog", "sem-things"]
}

NUM_EXPECTED_EXAMPLES = {
    "glue": {
        "cola": 522,
        "sst2": 436,
        "mrpc": 204,
        "qqp": 20215,
        "mnli": 4908,
        "mnli-mm": 4916,
        "qnli": 2732,
        "rte": 139,
        "boolq": 1635,
        "multirc": 2424,
        "wsc": 52
    },
    "blimp": {
        "adjunct_island": 928,
        "anaphor_gender_agreement": 971,
        "anaphor_number_agreement": 931,
        "animate_subject_passive": 895,
        "animate_subject_trans": 923,
        "causative": 818,
        "complex_NP_island": 846,
        "coordinate_structure_constraint_complex_left_branch": 906,
        "coordinate_structure_constraint_object_extraction": 949,
        "determiner_noun_agreement_1": 929,
        "determiner_noun_agreement_2": 931,
        "determiner_noun_agreement_irregular_1": 681,
        "determiner_noun_agreement_irregular_2": 820,
        "determiner_noun_agreement_with_adjective_1": 933,
        "determiner_noun_agreement_with_adj_2": 941,
        "determiner_noun_agreement_with_adj_irregular_1": 718,
        "determiner_noun_agreement_with_adj_irregular_2": 840,
        "distractor_agreement_relational_noun": 788,
        "distractor_agreement_relative_clause": 871,
        "drop_argument": 920,
        "ellipsis_n_bar_1": 802,
        "ellipsis_n_bar_2": 828,
        "existential_there_object_raising": 812,
        "existential_there_quantifiers_1": 930,
        "existential_there_quantifiers_2": 911,
        "existential_there_subject_raising": 924,
        "expletive_it_object_raising": 759,
        "inchoative": 855,
        "intransitive": 868,
        "irregular_past_participle_adjectives": 961,
        "irregular_past_participle_verbs": 942,
        "irregular_plural_subject_verb_agreement_1": 804,
        "irregular_plural_subject_verb_agreement_2": 892,
        "left_branch_island_echo_question": 947,
        "left_branch_island_simple_question": 951,
        "matrix_question_npi_licensor_present": 929,
        "npi_present_1": 909,
        "npi_present_2": 914,
        "only_npi_licensor_present": 882,
        "only_npi_scope": 837,
        "passive_1": 840,
        "passive_2": 903,
        "principle_A_case_1": 912,
        "principle_A_case_2": 915,
        "principle_A_c_command": 946,
        "principle_A_domain_1": 914,
        "principle_A_domain_2": 915,
        "principle_A_domain_3": 941,
        "principle_A_reconstruction": 967,
        "regular_plural_subject_verb_agreement_1": 890,
        "regular_plural_subject_verb_agreement_2": 945,
        "sentential_negation_npi_licensor_present": 919,
        "sentential_negation_npi_scope": 871,
        "sentential_subject_island": 961,
        "superlative_quantifiers_1": 979,
        "superlative_quantifiers_2": 986,
        "tough_vs_raising_1": 948,
        "tough_vs_raising_2": 920,
        "transitive": 868,
        "wh_island": 960,
        "wh_questions_object_gap": 859,
        "wh_questions_subject_gap": 898,
        "wh_questions_subject_gap_long_distance": 857,
        "wh_vs_that_no_gap": 861,
        "wh_vs_that_no_gap_long_distance": 875,
        "wh_vs_that_with_gap": 919,
        "wh_vs_that_with_gap_long_distance": 910
    },
    "blimp_supplement": {
        "hypernym": 842,
        "qa_congruence_easy": 64,
        "qa_congruence_tricky": 165,
        "subject_aux_inversion": 3867,
        "turn_taking": 280
    },
    "ewok": {
        "agent-properties": 2210,
        "material-dynamics": 770,
        "material-properties": 170,
        "physical-dynamics": 120,
        "physical-interactions": 556,
        "physical-relations": 818,
        "quantitative-properties": 314,
        "social-interactions": 294,
        "social-properties": 328,
        "social-relations": 1548,
        "spatial-relations": 490
    },
    "vqa": {
        "vqa": 25230
    },
    "winoground": {
        "winoground": 746
    },
    "devbench": {
        "lex-viz_vocab": 119,
        "gram-trog": 76,
        "sem-things": 1854
    }
}