Spaces:
Running
Running
File size: 7,255 Bytes
63cb7f9 a5487ef 63cb7f9 a5487ef 63cb7f9 e7750ca 63cb7f9 a5487ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import json
import os
import re
import numpy as np
from collections import defaultdict
from datetime import datetime, timedelta, timezone
import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from src.display.utils import TEXT_TASKS, VISION_TASKS, NUM_EXPECTED_EXAMPLES
def check_model_card(repo_id: str) -> tuple[bool, str]:
"""Checks if the model card and license exist and have been filled"""
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short."
return True, ""
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
try:
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
if test_tokenizer:
try:
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
except ValueError as e:
return (
False,
f"uses a tokenizer which is not in a transformers release: {e}",
None
)
except Exception as e:
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None
)
except Exception as e:
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
return model_info.config.get("architectures", "Unknown")
def already_submitted_models(requested_models_dir: str) -> set[str]:
"""Gather a list of already submitted models to avoid duplicates"""
depth = 1
file_names = []
users_to_submission_dates = defaultdict(list)
for root, _, files in os.walk(requested_models_dir):
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
if current_depth == depth:
for file in files:
if not file.endswith(".json"):
continue
with open(os.path.join(root, file), "r") as f:
info = json.load(f)
file_names.append(f"{info['model']}_{info['revision']}_{info['track']}")
# Select organisation
if info["model"].count("/") == 0 or "submitted_time" not in info:
continue
organisation, _ = info["model"].split("/")
users_to_submission_dates[organisation].append(info["submitted_time"])
return set(file_names), users_to_submission_dates
def is_valid_predictions(predictions: dict) -> tuple[bool, str]:
out_msg = ""
for task in TEXT_TASKS:
if task not in predictions:
out_msg = f"Error: {task} not present"
break
for subtask in TEXT_TASKS[task]:
if subtask not in predictions[task]:
out_msg = f"Error: {subtask} not present under {task}"
break
if out_msg != "":
break
if "vqa" in predictions or "winoground" in predictions or "devbench" in predictions:
for task in VISION_TASKS:
if task not in predictions:
out_msg = f"Error: {task} not present"
break
for subtask in VISION_TASKS[task]:
if subtask not in predictions[task]:
out_msg = f"Error: {subtask} not present under {task}"
break
if out_msg != "":
break
# Make sure all examples have predictions, and that predictions are the correct type
for task in predictions:
for subtask in predictions[task]:
if task == "devbench":
a = np.array(predictions[task][subtask]["predictions"])
if subtask == "sem-things":
required_shape = (1854, 1854)
elif subtask == "gram-trog":
required_shape = (76, 4, 1)
elif subtask == "lex-viz_vocab":
required_shape = (119, 4, 1)
if a.shape[0] != required_shape[0] or a.shape[1] != required_shape[1]:
out_msg = f"Error: Wrong shape for results for `{subtask}` in `{task}`."
break
if not str(a.dtype).startswith("float"):
out_msg = f"Error: Results for `{subtask}` ({task}) \
should be floats but aren't."
break
continue
num_expected_examples = NUM_EXPECTED_EXAMPLES[task][subtask]
if len(predictions[task][subtask]["predictions"]) != num_expected_examples:
out_msg = f"Error: {subtask} has the wrong number of examples."
break
if task == "glue":
if type(predictions[task][subtask]["predictions"][0]["pred"]) != int:
out_msg = f"Error: results for `{subtask}` (`{task}`) should be integers but aren't."
break
else:
if type(predictions[task][subtask]["predictions"][0]["pred"]) != str:
out_msg = f"Error: results for `{subtask}` (`{task}`) should be strings but aren't."
break
if out_msg != "":
break
if out_msg != "":
return False, out_msg
return True, "Upload successful." |