File size: 7,255 Bytes
63cb7f9
 
 
a5487ef
63cb7f9
 
 
 
 
 
 
 
 
a5487ef
 
63cb7f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7750ca
63cb7f9
 
 
 
 
 
 
 
a5487ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import json
import os
import re
import numpy as np
from collections import defaultdict
from datetime import datetime, timedelta, timezone

import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer

from src.display.utils import TEXT_TASKS, VISION_TASKS, NUM_EXPECTED_EXAMPLES

def check_model_card(repo_id: str) -> tuple[bool, str]:
    """Checks if the model card and license exist and have been filled"""
    try:
        card = ModelCard.load(repo_id)
    except huggingface_hub.utils.EntryNotFoundError:
        return False, "Please add a model card to your model to explain how you trained/fine-tuned it."

    # Enforce license metadata
    if card.data.license is None:
        if not ("license_name" in card.data and "license_link" in card.data):
            return False, (
                "License not found. Please add a license to your model card using the `license` metadata or a"
                " `license_name`/`license_link` pair."
            )

    # Enforce card content
    if len(card.text) < 200:
        return False, "Please add a description to your model card, it is too short."

    return True, ""

def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
    """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
    try:
        config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
        if test_tokenizer:
            try:
                tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
            except ValueError as e:
                return (
                    False,
                    f"uses a tokenizer which is not in a transformers release: {e}",
                    None
                )
            except Exception as e:
                return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
        return True, None, config

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
            None
        )

    except Exception as e:
        return False, "was not found on hub!", None


def get_model_size(model_info: ModelInfo, precision: str):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size

def get_model_arch(model_info: ModelInfo):
    """Gets the model architecture from the configuration"""
    return model_info.config.get("architectures", "Unknown")

def already_submitted_models(requested_models_dir: str) -> set[str]:
    """Gather a list of already submitted models to avoid duplicates"""
    depth = 1
    file_names = []
    users_to_submission_dates = defaultdict(list)

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            for file in files:
                if not file.endswith(".json"):
                    continue
                with open(os.path.join(root, file), "r") as f:
                    info = json.load(f)
                    file_names.append(f"{info['model']}_{info['revision']}_{info['track']}")

                    # Select organisation
                    if info["model"].count("/") == 0 or "submitted_time" not in info:
                        continue
                    organisation, _ = info["model"].split("/")
                    users_to_submission_dates[organisation].append(info["submitted_time"])

    return set(file_names), users_to_submission_dates

def is_valid_predictions(predictions: dict) -> tuple[bool, str]:
    out_msg = ""
    for task in TEXT_TASKS:
        if task not in predictions:
            out_msg = f"Error: {task} not present"
            break
        for subtask in TEXT_TASKS[task]:
            if subtask not in predictions[task]:
                out_msg = f"Error: {subtask} not present under {task}"
                break
        if out_msg != "":
            break
    if "vqa" in predictions or "winoground" in predictions or "devbench" in predictions:
        for task in VISION_TASKS:
            if task not in predictions:
                out_msg = f"Error: {task} not present"
                break
            for subtask in VISION_TASKS[task]:
                if subtask not in predictions[task]:
                    out_msg = f"Error: {subtask} not present under {task}"
                    break
            if out_msg != "":
                break
    
    # Make sure all examples have predictions, and that predictions are the correct type
    for task in predictions:
        for subtask in predictions[task]:
            if task == "devbench":
                a = np.array(predictions[task][subtask]["predictions"])
                if subtask == "sem-things":
                    required_shape = (1854, 1854)
                elif subtask == "gram-trog":
                    required_shape = (76, 4, 1)
                elif subtask == "lex-viz_vocab":
                    required_shape = (119, 4, 1)
                if a.shape[0] != required_shape[0] or a.shape[1] != required_shape[1]:
                    out_msg = f"Error: Wrong shape for results for `{subtask}` in `{task}`."
                    break
                if not str(a.dtype).startswith("float"):
                    out_msg = f"Error: Results for `{subtask}` ({task}) \
                        should be floats but aren't."
                    break
                continue
        
            num_expected_examples = NUM_EXPECTED_EXAMPLES[task][subtask]
            if len(predictions[task][subtask]["predictions"]) != num_expected_examples:
                out_msg = f"Error: {subtask} has the wrong number of examples."
                break

            if task == "glue":
                if type(predictions[task][subtask]["predictions"][0]["pred"]) != int:
                    out_msg = f"Error: results for `{subtask}` (`{task}`) should be integers but aren't."
                    break
            else:
                if type(predictions[task][subtask]["predictions"][0]["pred"]) != str:
                    out_msg = f"Error: results for `{subtask}` (`{task}`) should be strings but aren't."
                    break

        if out_msg != "":
            break
        
    if out_msg != "":
        return False, out_msg
    return True, "Upload successful."