File size: 3,117 Bytes
63cb7f9
 
 
 
 
 
 
 
 
 
 
a5487ef
63cb7f9
 
 
 
 
 
de60bd6
e1db744
63cb7f9
1ab72b5
 
63cb7f9
 
 
 
 
 
e1db744
e7750ca
e1db744
63cb7f9
de60bd6
9b785e1
de60bd6
 
63cb7f9
 
de60bd6
 
 
 
63cb7f9
 
 
a5487ef
 
63cb7f9
 
 
e1db744
63cb7f9
a5487ef
63cb7f9
9b785e1
63cb7f9
a5487ef
 
 
 
 
63cb7f9
 
 
 
 
de60bd6
e1db744
63cb7f9
1ab72b5
 
63cb7f9
 
 
 
 
 
fb22d4b
a5487ef
63cb7f9
 
 
 
a5487ef
63cb7f9
 
 
 
 
 
 
 
 
 
9b785e1
63cb7f9
 
 
 
 
 
1ab72b5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import json
import os
from datetime import datetime, timezone

from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
    is_valid_predictions,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model_name: str,
    model_id: str,
    revision: str,
    track: str,
    predictions: dict,
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    out_message = ""
    print(predictions)  # debugging

    user_name = ""
    model_path = model_name
    if "/" in model_name:
        user_name = model_name.split("/")[0]
        model_path = model_name.split("/")[1]

    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    
    if track is None:
        return styled_error("Please select a track.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"
    
    out_message = ""

    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model_id, revision=revision)
    except Exception:
        out_message += styled_warning("Could not get your model information. The leaderboard entry will not have a link to its HF repo.") + "<br>"

    modelcard_OK, error_msg = check_model_card(model_name)
    if not modelcard_OK:
        out_message += styled_warning(error_msg) + "<br>"

    predictions_OK, error_msg = is_valid_predictions(predictions)
    if not predictions_OK:
        return styled_error(error_msg) + "<br>"

    # Seems good, creating the eval
    print("Adding new eval")

    eval_entry = {
        "model_name": model_name,
        "hf_repo": model_id,
        "revision": revision,
        "track": track,
        "predictions": predictions,
        "status": "PENDING",
        "submitted_time": current_time,
        "private": False,
    }

    # Check for duplicate submission
    if f"{model_name}_{revision}_{track}" in REQUESTED_MODELS:
        return styled_error("A model with this name has been already submitted.")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_{revision}_eval_request_False_{track}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model_name} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the request to show in the PENDING list."
    )