Spaces:
Running
Running
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import numpy as np | |
import torch | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import tqdm | |
import argparse | |
import json | |
from data_builder import load_data | |
from metrics import get_roc_metrics, get_precision_recall_metrics | |
from model import from_pretrained | |
def experiment(args): | |
# load model | |
print(f'Beginning supervised evaluation with {args.model_name}...') | |
detector = from_pretrained(AutoModelForSequenceClassification, args.model_name, {}, args.cache_dir).to(args.device) | |
tokenizer = from_pretrained(AutoTokenizer, args.model_name, {}, args.cache_dir) | |
detector.eval() | |
# load data | |
data = load_data(args.dataset_file) | |
n_samples = len(data["sampled"]) | |
# eval detector | |
name = args.model_name | |
torch.manual_seed(args.seed) | |
np.random.seed(args.seed) | |
eval_results = [] | |
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): | |
original_text = data["original"][idx] | |
sampled_text = data["sampled"][idx] | |
# original text | |
tokenized = tokenizer(original_text, padding=True, truncation=True, max_length=512, return_tensors="pt").to(args.device) | |
with torch.no_grad(): | |
original_crit = detector(**tokenized).logits.softmax(-1)[0, 0].item() | |
# sampled text | |
tokenized = tokenizer(sampled_text, padding=True, truncation=True, max_length=512, return_tensors="pt").to(args.device) | |
with torch.no_grad(): | |
sampled_crit = detector(**tokenized).logits.softmax(-1)[0, 0].item() | |
# result | |
eval_results.append({"original": original_text, | |
"original_crit": original_crit, | |
"sampled": sampled_text, | |
"sampled_crit": sampled_crit}) | |
# compute prediction scores for real/sampled passages | |
predictions = {'real': [x["original_crit"] for x in eval_results], | |
'samples': [x["sampled_crit"] for x in eval_results]} | |
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) | |
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) | |
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") | |
# log results | |
results_file = f'{args.output_file}.{name}.json' | |
results = { 'name': f'{name}_threshold', | |
'info': {'n_samples': n_samples}, | |
'predictions': predictions, | |
'raw_results': eval_results, | |
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr}, | |
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r}, | |
'loss': 1 - pr_auc} | |
with open(results_file, 'w') as fout: | |
json.dump(results, fout) | |
print(f'Results written into {results_file}') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_file', type=str, default="./exp_test/results/xsum_gpt2") | |
parser.add_argument('--dataset', type=str, default="xsum") | |
parser.add_argument('--dataset_file', type=str, default="./exp_test/data/xsum_gpt2") | |
parser.add_argument('--model_name', type=str, default="roberta-base-openai-detector") | |
parser.add_argument('--seed', type=int, default=0) | |
parser.add_argument('--device', type=str, default="cuda") | |
parser.add_argument('--cache_dir', type=str, default="../cache") | |
args = parser.parse_args() | |
experiment(args) | |