fast_detect_gpt / data_builder.py
azra-kml's picture
Upload 30 files
aefc9ef verified
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import time
import numpy as np
import datasets
import torch
import random
import argparse
import os
import json
import custom_datasets
from model import load_tokenizer, load_model
def save_data(output_file, args, data):
# write args to file
args_file = f"{output_file}.args.json"
with open(args_file, "w") as fout:
json.dump(args.__dict__, fout, indent=4)
print(f"Args written into {args_file}")
# write the data to a json file in the save folder
data_file = f"{output_file}.raw_data.json"
with open(data_file, "w") as fout:
json.dump(data, fout, indent=4)
print(f"Raw data written into {data_file}")
def load_data(input_file):
data_file = f"{input_file}.raw_data.json"
with open(data_file, "r") as fin:
data = json.load(fin)
print(f"Raw data loaded from {data_file}")
return data
class DataBuilder:
def __init__(self, args):
self.args = args
self.base_tokenizer = load_tokenizer(args.base_model_name, args.dataset, args.cache_dir)
self.base_model = None if args.openai_model else load_model(args.base_model_name, args.device, args.cache_dir)
def _openai_sample(self, prefix):
def _drop_last_word(text):
return ' '.join(text.split(' ')[:-1])
import openai
assert self.args.openai_key is not None, "Must provide OpenAI API key as --openai_key"
openai.api_key = self.args.openai_key
if self.args.openai_base is not None:
openai.api_base = self.args.openai_base
if self.args.dataset != 'pubmed': # keep Answer: prefix for pubmed
prefix = _drop_last_word(prefix)
# sample from the openai model
kwargs = {"max_tokens": 200}
if self.args.do_top_p:
kwargs['top_p'] = self.args.top_p
elif self.args.do_top_k:
kwargs['top_k'] = self.args.top_k
elif self.args.do_temperature:
kwargs['temperature'] = self.args.temperature
if self.args.openai_model == 'davinci':
kwargs["engine"] = self.args.openai_model
response = openai.Completion.create(prompt=f"{prefix}", **kwargs)
return prefix + response['choices'][0]['text']
elif self.args.openai_model in ['gpt-3.5-turbo', 'gpt-4']:
roles = {'xsum': 'You are a News writer.',
'writing': 'You are a Fiction writer.',
'pubmed': 'You are a Technical writer.'}
prompts = {'xsum': 'Please write an article with about 150 words starting exactly with:',
'writing': 'Please write an article with about 150 words starting exactly with:',
'pubmed': 'Please answer the question in about 50 words.'}
messages = [
{'role': 'system', 'content': roles[self.args.dataset]},
{'role': 'user', 'content': f'{prompts[self.args.dataset]} {prefix}'},
]
kwargs["model"] = self.args.openai_model
kwargs["messages"] = messages
response = openai.ChatCompletion.create(**kwargs)
response = response['choices'][0]['message']['content']
# ChatGPT may repeat the prefix
if response.startswith(prefix[:20]):
return response
return prefix + ' ' + response
else:
raise NotImplementedError
# sample from base_model using ****only**** the first 30 tokens in each example as context
def _sample_from_model(self, texts, min_words=55, prompt_tokens=30):
# encode each text as a list of token ids
if self.args.dataset == 'pubmed':
texts = [t[:t.index(custom_datasets.SEPARATOR)] for t in texts]
all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(self.args.device)
else:
all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(self.args.device)
all_encoded = {key: value[:, :prompt_tokens] for key, value in all_encoded.items()}
if self.args.openai_model:
# decode the prefixes back into text
prefixes = self.base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True)
decoded = []
for idx, prefix in enumerate(prefixes):
while idx >= len(decoded):
try:
decoded.append(self._openai_sample(prefix))
except Exception as ex:
print(ex)
print('Wait 10 minutes before retry ...')
time.sleep(600)
else:
self.base_model.eval()
decoded = ['' for _ in range(len(texts))]
# sample from the model until we get a sample with at least min_words words for each example
# this is an inefficient way to do this (since we regenerate for all inputs if just one is too short), but it works
tries = 0
m = 0
while m < min_words:
if tries != 0:
print()
print(f"min words: {m}, needed {min_words}, regenerating (try {tries})")
prefixes = self.base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True)
for prefix, x in zip(prefixes, decoded):
if len(x.split()) == m:
print(prefix, '=>', x)
sampling_kwargs = {}
if self.args.do_top_p:
sampling_kwargs['top_p'] = self.args.top_p
elif self.args.do_top_k:
sampling_kwargs['top_k'] = self.args.top_k
elif self.args.do_temperature:
sampling_kwargs['temperature'] = self.args.temperature
min_length = 50 if self.args.dataset in ['pubmed'] else 150
outputs = self.base_model.generate(**all_encoded, min_length=min_length, max_length=200, do_sample=True,
**sampling_kwargs, pad_token_id=self.base_tokenizer.eos_token_id,
eos_token_id=self.base_tokenizer.eos_token_id)
decoded = self.base_tokenizer.batch_decode(outputs, skip_special_tokens=True)
m = min(len(x.split()) for x in decoded)
tries += 1
return decoded
def generate_samples(self, raw_data, batch_size):
# trim to shorter length
def _trim_to_shorter_length(texta, textb):
# truncate to shorter of o and s
shorter_length = min(len(texta.split(' ')), len(textb.split(' ')))
texta = ' '.join(texta.split(' ')[:shorter_length])
textb = ' '.join(textb.split(' ')[:shorter_length])
return texta, textb
def _truncate_to_substring(text, substring, idx_occurrence):
# truncate everything after the idx_occurrence occurrence of substring
assert idx_occurrence > 0, 'idx_occurrence must be > 0'
idx = -1
for _ in range(idx_occurrence):
idx = text.find(substring, idx + 1)
if idx == -1:
return text
return text[:idx]
data = {
"original": [],
"sampled": [],
}
for batch in range(len(raw_data) // batch_size):
print('Generating samples for batch', batch, 'of', len(raw_data) // batch_size)
original_text = raw_data[batch * batch_size:(batch + 1) * batch_size]
sampled_text = self._sample_from_model(original_text, min_words=30 if self.args.dataset in ['pubmed'] else 55)
for o, s in zip(original_text, sampled_text):
if self.args.dataset == 'pubmed':
s = _truncate_to_substring(s, 'Question:', 2)
o = o.replace(custom_datasets.SEPARATOR, ' ')
o, s = _trim_to_shorter_length(o, s)
# add to the data
data["original"].append(o)
data["sampled"].append(s)
return data
def generate_data(args, dataset, key):
# strip newlines from each example; replace one or more newlines with a single space
def _strip_newlines(text):
return ' '.join(text.split())
# load data
if dataset in custom_datasets.DATASETS:
data = custom_datasets.load(dataset, args.cache_dir)
else:
data = custom_datasets.load_dataset(dataset, split='train', cache_dir=args.cache_dir)[key]
# get unique examples, strip whitespace, and remove newlines
# then take just the long examples, shuffle, take the first 5,000 to tokenize to save time
# then take just the examples that are <= 512 tokens (for the base model)
# then generate n_samples samples
# remove duplicates from the data
data = list(dict.fromkeys(data)) # deterministic, as opposed to set()
# strip whitespace around each example
data = [x.strip() for x in data]
# remove newlines from each example
data = [_strip_newlines(x) for x in data]
# try to keep only examples with > 250 words
if dataset in ['writing', 'squad', 'xsum']:
long_data = [x for x in data if len(x.split()) > 250]
if len(long_data) > 0:
data = long_data
random.shuffle(data)
data = data[:5_000]
# keep only examples with <= 512 tokens according to base_tokenizer
# this step has the extra effect of removing examples with low-quality/garbage content
data_builder = DataBuilder(args)
tokenized_data = data_builder.base_tokenizer(data)
data = [x for x, y in zip(data, tokenized_data["input_ids"]) if len(y) <= 512]
# print stats about remaining data
print(f"Total number of samples: {len(data)}")
print(f"Average number of words: {np.mean([len(x.split()) for x in data])}")
return data_builder.generate_samples(data[:args.n_samples], batch_size=args.batch_size)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_gpt3/data/xsum_gpt2")
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--n_samples', type=int, default=200)
parser.add_argument('--openai_base', type=str, default=None)
parser.add_argument('--openai_key', type=str, default=None)
parser.add_argument('--openai_model', type=str, default=None) # davinci, gpt-3.5-turbo, gpt-4
parser.add_argument('--base_model_name', type=str, default="gpt2")
parser.add_argument('--batch_size', type=int, default=50)
parser.add_argument('--do_top_k', action='store_true')
parser.add_argument('--top_k', type=int, default=40)
parser.add_argument('--do_top_p', action='store_true')
parser.add_argument('--top_p', type=float, default=0.96)
parser.add_argument('--do_temperature', action='store_true')
parser.add_argument('--temperature', type=float, default=0.8)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--cache_dir', type=str, default="../cache")
args = parser.parse_args()
os.environ["XDG_CACHE_HOME"] = args.cache_dir
if not os.path.exists(args.cache_dir):
os.makedirs(args.cache_dir)
print(f"Using cache dir {args.cache_dir}")
random.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
print(f'Loading dataset {args.dataset}...')
dataset_keys = {'xsum': 'document', 'squad': 'context', 'writing': 'document'}
data = generate_data(args, args.dataset, dataset_keys[args.dataset] if args.dataset in dataset_keys else None)
save_data(args.output_file, args, data)