# Copyright (c) Guangsheng Bao. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time import numpy as np import datasets import torch import random import argparse import os import json import custom_datasets from model import load_tokenizer, load_model def save_data(output_file, args, data): # write args to file args_file = f"{output_file}.args.json" with open(args_file, "w") as fout: json.dump(args.__dict__, fout, indent=4) print(f"Args written into {args_file}") # write the data to a json file in the save folder data_file = f"{output_file}.raw_data.json" with open(data_file, "w") as fout: json.dump(data, fout, indent=4) print(f"Raw data written into {data_file}") def load_data(input_file): data_file = f"{input_file}.raw_data.json" with open(data_file, "r") as fin: data = json.load(fin) print(f"Raw data loaded from {data_file}") return data class DataBuilder: def __init__(self, args): self.args = args self.base_tokenizer = load_tokenizer(args.base_model_name, args.dataset, args.cache_dir) self.base_model = None if args.openai_model else load_model(args.base_model_name, args.device, args.cache_dir) def _openai_sample(self, prefix): def _drop_last_word(text): return ' '.join(text.split(' ')[:-1]) import openai assert self.args.openai_key is not None, "Must provide OpenAI API key as --openai_key" openai.api_key = self.args.openai_key if self.args.openai_base is not None: openai.api_base = self.args.openai_base if self.args.dataset != 'pubmed': # keep Answer: prefix for pubmed prefix = _drop_last_word(prefix) # sample from the openai model kwargs = {"max_tokens": 200} if self.args.do_top_p: kwargs['top_p'] = self.args.top_p elif self.args.do_top_k: kwargs['top_k'] = self.args.top_k elif self.args.do_temperature: kwargs['temperature'] = self.args.temperature if self.args.openai_model == 'davinci': kwargs["engine"] = self.args.openai_model response = openai.Completion.create(prompt=f"{prefix}", **kwargs) return prefix + response['choices'][0]['text'] elif self.args.openai_model in ['gpt-3.5-turbo', 'gpt-4']: roles = {'xsum': 'You are a News writer.', 'writing': 'You are a Fiction writer.', 'pubmed': 'You are a Technical writer.'} prompts = {'xsum': 'Please write an article with about 150 words starting exactly with:', 'writing': 'Please write an article with about 150 words starting exactly with:', 'pubmed': 'Please answer the question in about 50 words.'} messages = [ {'role': 'system', 'content': roles[self.args.dataset]}, {'role': 'user', 'content': f'{prompts[self.args.dataset]} {prefix}'}, ] kwargs["model"] = self.args.openai_model kwargs["messages"] = messages response = openai.ChatCompletion.create(**kwargs) response = response['choices'][0]['message']['content'] # ChatGPT may repeat the prefix if response.startswith(prefix[:20]): return response return prefix + ' ' + response else: raise NotImplementedError # sample from base_model using ****only**** the first 30 tokens in each example as context def _sample_from_model(self, texts, min_words=55, prompt_tokens=30): # encode each text as a list of token ids if self.args.dataset == 'pubmed': texts = [t[:t.index(custom_datasets.SEPARATOR)] for t in texts] all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(self.args.device) else: all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(self.args.device) all_encoded = {key: value[:, :prompt_tokens] for key, value in all_encoded.items()} if self.args.openai_model: # decode the prefixes back into text prefixes = self.base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True) decoded = [] for idx, prefix in enumerate(prefixes): while idx >= len(decoded): try: decoded.append(self._openai_sample(prefix)) except Exception as ex: print(ex) print('Wait 10 minutes before retry ...') time.sleep(600) else: self.base_model.eval() decoded = ['' for _ in range(len(texts))] # sample from the model until we get a sample with at least min_words words for each example # this is an inefficient way to do this (since we regenerate for all inputs if just one is too short), but it works tries = 0 m = 0 while m < min_words: if tries != 0: print() print(f"min words: {m}, needed {min_words}, regenerating (try {tries})") prefixes = self.base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True) for prefix, x in zip(prefixes, decoded): if len(x.split()) == m: print(prefix, '=>', x) sampling_kwargs = {} if self.args.do_top_p: sampling_kwargs['top_p'] = self.args.top_p elif self.args.do_top_k: sampling_kwargs['top_k'] = self.args.top_k elif self.args.do_temperature: sampling_kwargs['temperature'] = self.args.temperature min_length = 50 if self.args.dataset in ['pubmed'] else 150 outputs = self.base_model.generate(**all_encoded, min_length=min_length, max_length=200, do_sample=True, **sampling_kwargs, pad_token_id=self.base_tokenizer.eos_token_id, eos_token_id=self.base_tokenizer.eos_token_id) decoded = self.base_tokenizer.batch_decode(outputs, skip_special_tokens=True) m = min(len(x.split()) for x in decoded) tries += 1 return decoded def generate_samples(self, raw_data, batch_size): # trim to shorter length def _trim_to_shorter_length(texta, textb): # truncate to shorter of o and s shorter_length = min(len(texta.split(' ')), len(textb.split(' '))) texta = ' '.join(texta.split(' ')[:shorter_length]) textb = ' '.join(textb.split(' ')[:shorter_length]) return texta, textb def _truncate_to_substring(text, substring, idx_occurrence): # truncate everything after the idx_occurrence occurrence of substring assert idx_occurrence > 0, 'idx_occurrence must be > 0' idx = -1 for _ in range(idx_occurrence): idx = text.find(substring, idx + 1) if idx == -1: return text return text[:idx] data = { "original": [], "sampled": [], } for batch in range(len(raw_data) // batch_size): print('Generating samples for batch', batch, 'of', len(raw_data) // batch_size) original_text = raw_data[batch * batch_size:(batch + 1) * batch_size] sampled_text = self._sample_from_model(original_text, min_words=30 if self.args.dataset in ['pubmed'] else 55) for o, s in zip(original_text, sampled_text): if self.args.dataset == 'pubmed': s = _truncate_to_substring(s, 'Question:', 2) o = o.replace(custom_datasets.SEPARATOR, ' ') o, s = _trim_to_shorter_length(o, s) # add to the data data["original"].append(o) data["sampled"].append(s) return data def generate_data(args, dataset, key): # strip newlines from each example; replace one or more newlines with a single space def _strip_newlines(text): return ' '.join(text.split()) # load data if dataset in custom_datasets.DATASETS: data = custom_datasets.load(dataset, args.cache_dir) else: data = custom_datasets.load_dataset(dataset, split='train', cache_dir=args.cache_dir)[key] # get unique examples, strip whitespace, and remove newlines # then take just the long examples, shuffle, take the first 5,000 to tokenize to save time # then take just the examples that are <= 512 tokens (for the base model) # then generate n_samples samples # remove duplicates from the data data = list(dict.fromkeys(data)) # deterministic, as opposed to set() # strip whitespace around each example data = [x.strip() for x in data] # remove newlines from each example data = [_strip_newlines(x) for x in data] # try to keep only examples with > 250 words if dataset in ['writing', 'squad', 'xsum']: long_data = [x for x in data if len(x.split()) > 250] if len(long_data) > 0: data = long_data random.shuffle(data) data = data[:5_000] # keep only examples with <= 512 tokens according to base_tokenizer # this step has the extra effect of removing examples with low-quality/garbage content data_builder = DataBuilder(args) tokenized_data = data_builder.base_tokenizer(data) data = [x for x, y in zip(data, tokenized_data["input_ids"]) if len(y) <= 512] # print stats about remaining data print(f"Total number of samples: {len(data)}") print(f"Average number of words: {np.mean([len(x.split()) for x in data])}") return data_builder.generate_samples(data[:args.n_samples], batch_size=args.batch_size) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output_file', type=str, default="./exp_gpt3/data/xsum_gpt2") parser.add_argument('--dataset', type=str, default="xsum") parser.add_argument('--n_samples', type=int, default=200) parser.add_argument('--openai_base', type=str, default=None) parser.add_argument('--openai_key', type=str, default=None) parser.add_argument('--openai_model', type=str, default=None) # davinci, gpt-3.5-turbo, gpt-4 parser.add_argument('--base_model_name', type=str, default="gpt2") parser.add_argument('--batch_size', type=int, default=50) parser.add_argument('--do_top_k', action='store_true') parser.add_argument('--top_k', type=int, default=40) parser.add_argument('--do_top_p', action='store_true') parser.add_argument('--top_p', type=float, default=0.96) parser.add_argument('--do_temperature', action='store_true') parser.add_argument('--temperature', type=float, default=0.8) parser.add_argument('--seed', type=int, default=0) parser.add_argument('--device', type=str, default="cuda") parser.add_argument('--cache_dir', type=str, default="../cache") args = parser.parse_args() os.environ["XDG_CACHE_HOME"] = args.cache_dir if not os.path.exists(args.cache_dir): os.makedirs(args.cache_dir) print(f"Using cache dir {args.cache_dir}") random.seed(args.seed) torch.manual_seed(args.seed) np.random.seed(args.seed) print(f'Loading dataset {args.dataset}...') dataset_keys = {'xsum': 'document', 'squad': 'context', 'writing': 'document'} data = generate_data(args, args.dataset, dataset_keys[args.dataset] if args.dataset in dataset_keys else None) save_data(args.output_file, args, data)