Spaces:
Running
Running
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# setup the environment | |
echo `date`, Setup the environment ... | |
set -e # exit if error | |
# prepare folders | |
exp_path=exp_temperature | |
data_path=$exp_path/data | |
res_path=$exp_path/results | |
mkdir -p $exp_path $data_path $res_path | |
datasets="xsum squad writing" | |
source_models="gpt2-xl opt-2.7b gpt-neo-2.7B gpt-j-6B gpt-neox-20b" | |
# preparing dataset | |
for D in $datasets; do | |
for M in $source_models; do | |
echo `date`, Preparing dataset ${D}-${M} ... | |
python scripts/data_builder.py --dataset $D --n_samples 500 --do_temperature --base_model_name $M --output_file $data_path/${D}_${M} | |
done | |
done | |
# White-box Setting | |
echo `date`, Evaluate models in the white-box setting: | |
# evaluate Fast-DetectGPT and fast baselines | |
for D in $datasets; do | |
for M in $source_models; do | |
echo `date`, Evaluating Fast-DetectGPT on ${D}_${M} ... | |
python scripts/fast_detect_gpt.py --reference_model_name $M --scoring_model_name $M --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
echo `date`, Evaluating baseline methods on ${D}_${M} ... | |
python scripts/baselines.py --scoring_model_name $M --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
done | |
done | |
# evaluate DetectGPT and its improvement DetectLLM | |
for D in $datasets; do | |
for M in $source_models; do | |
echo `date`, Evaluating DetectGPT on ${D}_${M} ... | |
python scripts/detect_gpt.py --scoring_model_name $M --mask_filling_model_name t5-3b --n_perturbations 100 --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
# we leverage DetectGPT to generate the perturbations | |
echo `date`, Evaluating DetectLLM methods on ${D}_${M} ... | |
python scripts/detect_llm.py --scoring_model_name $M --dataset $D \ | |
--dataset_file $data_path/${D}_${M}.t5-3b.perturbation_100 --output_file $res_path/${D}_${M} | |
done | |
done | |
# Black-box Setting | |
echo `date`, Evaluate models in the black-box setting: | |
scoring_models="gpt-neo-2.7B" | |
# evaluate Fast-DetectGPT | |
for D in $datasets; do | |
for M in $source_models; do | |
M1=gpt-j-6B # sampling model | |
for M2 in $scoring_models; do | |
echo `date`, Evaluating Fast-DetectGPT on ${D}_${M}.${M1}_${M2} ... | |
python scripts/fast_detect_gpt.py --reference_model_name ${M1} --scoring_model_name ${M2} --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2} | |
done | |
done | |
done | |
# evaluate DetectGPT and its improvement DetectLLM | |
for D in $datasets; do | |
for M in $source_models; do | |
M1=t5-3b # perturbation model | |
for M2 in $scoring_models; do | |
echo `date`, Evaluating DetectGPT on ${D}_${M}.${M1}_${M2} ... | |
python scripts/detect_gpt.py --mask_filling_model_name ${M1} --scoring_model_name ${M2} --n_perturbations 100 --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M}.${M1}_${M2} | |
# we leverage DetectGPT to generate the perturbations | |
echo `date`, Evaluating DetectLLM methods on ${D}_${M}.${M1}_${M2} ... | |
python scripts/detect_llm.py --scoring_model_name ${M2} --dataset $D \ | |
--dataset_file $data_path/${D}_${M}.${M1}.perturbation_100 --output_file $res_path/${D}_${M}.${M1}_${M2} | |
done | |
done | |
done |