Spaces:
Running
Running
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# setup the environment | |
echo `date`, Setup the environment ... | |
set -e # exit if error | |
# prepare folders | |
exp_path=exp_supervised | |
data_path=$exp_path/data | |
res_path=$exp_path/results | |
mkdir -p $exp_path $data_path $res_path | |
# preparing dataset | |
for P in "english:mgpt" "german:mgpt" "pubmed:pubmedgpt" "xsum:gpt2-xl"; do | |
IFS=':' read -r -a P <<< $P && D=${P[0]} && M=${P[1]} | |
echo `date`, Preparing dataset ${D}-${M} ... | |
python scripts/data_builder.py --dataset $D --n_samples 200 --base_model_name $M --output_file $data_path/${D}_${M} | |
done | |
# evaluate baselines | |
for P in "english:mgpt" "german:mgpt" "pubmed:pubmedgpt" "xsum:gpt2-xl"; do | |
IFS=':' read -r -a P <<< $P && D=${P[0]} && M=${P[1]} | |
echo `date`, Evaluating baseline methods on ${D}_${M} ... | |
python scripts/baselines.py --scoring_model_name $M --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
done | |
# evaluate supervised detectors | |
for P in "english:mgpt" "german:mgpt" "pubmed:pubmedgpt" "xsum:gpt2-xl"; do | |
IFS=':' read -r -a P <<< $P && D=${P[0]} && M=${P[1]} | |
for SM in roberta-base-openai-detector roberta-large-openai-detector; do | |
echo `date`, Evaluating ${SM} on ${D}_${M} ... | |
python scripts/supervised.py --model_name $SM --dataset $D \ | |
--dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
done | |
done | |
# evaluate DetectGPT | |
for P in "english:mgpt:mt5-xl" "german:mgpt:mt5-xl" "pubmed:pubmedgpt:t5-11b" "xsum:gpt2-xl:t5-11b"; do | |
IFS=':' read -r -a P <<< $P && D=${P[0]} && M1=${P[1]} && M2=${P[2]} | |
echo `date`, Evaluating DetectGPT on ${D}_${M1}_${M2} ... | |
python scripts/detect_gpt.py --scoring_model_name $M1 --mask_filling_model_name $M2 --n_perturbations 100 --dataset $D \ | |
--dataset_file $data_path/${D}_${M1} --output_file $res_path/${D}_${M1}_${M2} | |
done | |
# evaluate Fast-DetectGPT | |
for P in "english:mgpt" "german:mgpt" "pubmed:pubmedgpt" "xsum:gpt2-xl"; do | |
IFS=':' read -r -a P <<< $P && D=${P[0]} && M=${P[1]} | |
echo `date`, Evaluating Fast-DetectGPT on ${D}-${M} ... | |
python scripts/fast_detect_gpt.py --reference_model_name $M --scoring_model_name $M \ | |
--dataset $D --dataset_file $data_path/${D}_${M} --output_file $res_path/${D}_${M} | |
done | |