fast_detect_gpt / report_results.py
azra-kml's picture
Upload 30 files
aefc9ef verified
raw
history blame
21.5 kB
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os.path
import argparse
import json
import numpy as np
def save_lines(lines, file):
with open(file, 'w') as fout:
fout.write('\n'.join(lines))
def get_auroc(result_file):
with open(result_file, 'r') as fin:
res = json.load(fin)
return res['metrics']['roc_auc']
def get_fpr_tpr(result_file):
with open(result_file, 'r') as fin:
res = json.load(fin)
return res['metrics']['fpr'], res['metrics']['tpr']
def report_main_results(args):
datasets = {'xsum': 'XSum',
'squad': 'SQuAD',
'writing': 'WritingPrompts'}
source_models = {'gpt2-xl': 'GPT-2',
'opt-2.7b': 'OPT-2.7',
'gpt-neo-2.7B': 'Neo-2.7',
'gpt-j-6B': 'GPT-J',
'gpt-neox-20b': 'NeoX'}
methods1 = {'likelihood': 'Likelihood',
'entropy': 'Entropy',
'logrank': 'LogRank',
'lrr': 'LRR',
'npr': 'NPR'}
methods2 = {'perturbation_100': 'DetectGPT',
'sampling_discrepancy': 'Fast-DetectGPT'}
def _get_method_aurocs(dataset, method, filter=''):
cols = []
for model in source_models:
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json'
if os.path.exists(result_file):
auroc = get_auroc(result_file)
else:
auroc = 0.0
cols.append(auroc)
cols.append(np.mean(cols))
return cols
headers = ['Method'] + [source_models[model] for model in source_models] + ['Avg.']
for dataset in datasets:
print('----')
print(datasets[dataset])
print('----')
print(' '.join(headers))
# basic methods
for method in methods1:
method_name = methods1[method]
cols = _get_method_aurocs(dataset, method)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
# white-box comparison
results = {}
for method in methods2:
method_name = methods2[method]
cols = _get_method_aurocs(dataset, method)
results[method_name] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT'])
cols = [f'{col:.4f}' for col in cols]
print('(Diff)', ' '.join(cols))
# black-box comparison
filters = {'perturbation_100': '.t5-3b_gpt-neo-2.7B',
'sampling_discrepancy': '.gpt-j-6B_gpt-neo-2.7B'}
results = {}
for method in methods2:
method_name = methods2[method]
cols = _get_method_aurocs(dataset, method, filters[method])
results[method_name] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT'])
cols = [f'{col:.4f}' for col in cols]
print('(Diff)', ' '.join(cols))
def report_main_ext_results(args):
datasets = {'xsum': 'XSum',
'squad': 'SQuAD',
'writing': 'WritingPrompts'}
source_models = {'bloom-7b1': 'BLOOM-7.1',
'opt-13b': 'OPT-13',
'llama-13b': 'Llama-13',
'llama2-13b': 'Llama2-13',
}
methods1 = {'likelihood': 'Likelihood',
'entropy': 'Entropy',
'logrank': 'LogRank',
'lrr': 'LRR',
'npr': 'NPR'}
methods2 = {'perturbation_100': 'DetectGPT',
'sampling_discrepancy': 'Fast-DetectGPT'}
def _get_method_aurocs(dataset, method, filter=''):
cols = []
for model in source_models:
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json'
if os.path.exists(result_file):
auroc = get_auroc(result_file)
else:
auroc = 0.0
cols.append(auroc)
cols.append(np.mean(cols))
return cols
headers = ['Method'] + [source_models[model] for model in source_models] + ['Avg.']
for dataset in datasets:
print('----')
print(datasets[dataset])
print('----')
print(' '.join(headers))
# basic methods
for method in methods1:
method_name = methods1[method]
cols = _get_method_aurocs(dataset, method)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
# white-box comparison
results = {}
for method in methods2:
method_name = methods2[method]
cols = _get_method_aurocs(dataset, method)
results[method_name] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT'])
cols = [f'{col:.4f}' for col in cols]
print('(Diff)', ' '.join(cols))
# black-box comparison
filters = {'perturbation_100': '.t5-3b_gpt-neo-2.7B',
'sampling_discrepancy': '.gpt-j-6B_gpt-neo-2.7B'}
results = {}
for method in methods2:
method_name = methods2[method]
cols = _get_method_aurocs(dataset, method, filters[method])
results[method_name] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
cols = np.array(results['Fast-DetectGPT']) - np.array(results['DetectGPT'])
cols = [f'{col:.4f}' for col in cols]
print('(Diff)', ' '.join(cols))
def report_refmodel_results(args):
datasets = {'xsum': 'XSum',
'squad': 'SQuAD',
'writing': 'WritingPrompts'}
source_models = {'gpt2-xl': 'GPT-2',
'gpt-neo-2.7B': 'Neo-2.7',
'gpt-j-6B': 'GPT-J'}
def _get_method_aurocs(method, ref_model=None):
cols = []
for dataset in datasets:
for model in source_models:
filter = '' if ref_model is None or ref_model == model else f'.{ref_model}_{model}'
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json'
if os.path.exists(result_file):
auroc = get_auroc(result_file)
else:
auroc = 0.0
cols.append(auroc)
cols.append(np.mean(cols))
return cols
headers1 = ['----'] + list([datasets[d] for d in datasets])
headers2 = ['Method'] + [source_models[model] for model in source_models] \
+ [source_models[model] for model in source_models] \
+ [source_models[model] for model in source_models] \
+ ['Avg.']
print(' '.join(headers1))
print(' '.join(headers2))
ref_models = [None, 'gpt2-xl', 'gpt-neo-2.7B', 'gpt-j-6B']
for ref_model in ref_models:
method = 'sampling_discrepancy'
method_name = 'Fast-DetectGPT (*/*)' if ref_model is None else f'Fast-DetectGPT ({source_models[ref_model]}/*)'
cols = _get_method_aurocs(method, ref_model)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
def report_chatgpt_gpt4_results(args):
datasets = {'xsum': 'XSum',
'writing': 'Writing',
'pubmed': 'PubMed'}
source_models = {'gpt-3.5-turbo': 'ChatGPT',
'gpt-4': 'GPT-4'}
score_models = { 't5-11b': 'T5-11B',
'gpt2-xl': 'GPT-2',
'opt-2.7b': 'OPT-2.7',
'gpt-neo-2.7B': 'Neo-2.7',
'gpt-j-6B': 'GPT-J',
'gpt-neox-20b': 'NeoX'}
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base',
'roberta-large-openai-detector': 'RoBERTa-large'}
methods2 = {'likelihood': 'Likelihood', 'entropy': 'Entropy', 'logrank': 'LogRank'}
methods3 = {'lrr': 'LRR', 'npr': 'NPR', 'perturbation_100': 'DetectGPT',
'sampling_discrepancy_analytic': 'Fast'}
def _get_method_aurocs(method, filter=''):
results = []
for model in source_models:
cols = []
for dataset in datasets:
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json'
if os.path.exists(result_file):
auroc = get_auroc(result_file)
else:
auroc = 0.0
cols.append(auroc)
cols.append(np.mean(cols))
results.extend(cols)
return results
headers1 = ['--'] + [source_models[model] for model in source_models]
headers2 = ['Method'] + [datasets[dataset] for dataset in datasets] + ['Avg.'] \
+ [datasets[dataset] for dataset in datasets] + ['Avg.']
print(' '.join(headers1))
print(' '.join(headers2))
# supervised methods
for method in methods1:
method_name = methods1[method]
cols = _get_method_aurocs(method)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
# zero-shot methods
filters2 = {'likelihood': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'],
'entropy': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'],
'logrank': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b']}
filters3 = {'lrr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'],
'npr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'],
'perturbation_100': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'],
'sampling_discrepancy_analytic': ['.gpt-j-6B_gpt2-xl', '.gpt-j-6B_gpt-neo-2.7B', '.gpt-j-6B_gpt-j-6B', '.gpt-neox-20b_gpt-neox-20b']}
for method in methods2:
for filter in filters2[method]:
setting = score_models[filter[1:]]
method_name = f'{methods2[method]}({setting})'
cols = _get_method_aurocs(method, filter)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
for method in methods3:
for filter in filters3[method]:
setting = [score_models[model] for model in filter[1:].split('_')]
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})'
cols = _get_method_aurocs(method, filter)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
def report_gpt3_results(args):
datasets = {'xsum': 'XSum',
'writing': 'Writing',
'pubmed': 'PubMed'}
source_models = {'davinci': 'GPT-3'}
score_models = { 't5-11b': 'T5-11B',
'gpt2-xl': 'GPT-2',
'opt-2.7b': 'OPT-2.7',
'gpt-neo-2.7B': 'Neo-2.7',
'gpt-j-6B': 'GPT-J',
'gpt-neox-20b': 'NeoX'}
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base',
'roberta-large-openai-detector': 'RoBERTa-large'}
methods2 = {'likelihood': 'Likelihood', 'entropy': 'Entropy', 'logrank': 'LogRank'}
methods3 = {'lrr': 'LRR', 'npr': 'NPR', 'perturbation_100': 'DetectGPT',
'sampling_discrepancy_analytic': 'Fast'}
def _get_method_aurocs(method, filter=''):
results = []
for model in source_models:
cols = []
for dataset in datasets:
result_file = f'{args.result_path}/{dataset}_{model}{filter}.{method}.json'
if os.path.exists(result_file):
auroc = get_auroc(result_file)
else:
auroc = 0.0
cols.append(auroc)
cols.append(np.mean(cols))
results.extend(cols)
return results
headers1 = ['--'] + [source_models[model] for model in source_models]
headers2 = ['Method'] + [datasets[dataset] for dataset in datasets] + ['Avg.'] \
+ [datasets[dataset] for dataset in datasets] + ['Avg.']
print(' '.join(headers1))
print(' '.join(headers2))
# supervised methods
for method in methods1:
method_name = methods1[method]
cols = _get_method_aurocs(method)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
# zero-shot methods
filters2 = {'likelihood': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'],
'entropy': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b'],
'logrank': ['.gpt2-xl', '.gpt-neo-2.7B', '.gpt-j-6B', '.gpt-neox-20b']}
filters3 = {'lrr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'],
'npr': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'],
'perturbation_100': ['.t5-11b_gpt2-xl', '.t5-11b_gpt-neo-2.7B', '.t5-11b_gpt-j-6B', '.t5-11b_gpt-neox-20b'],
'sampling_discrepancy_analytic': ['.gpt-j-6B_gpt2-xl', '.gpt-j-6B_gpt-neo-2.7B', '.gpt-j-6B_gpt-j-6B', '.gpt-neox-20b_gpt-neox-20b']}
for method in methods2:
for filter in filters2[method]:
setting = score_models[filter[1:]]
method_name = f'{methods2[method]}({setting})'
cols = _get_method_aurocs(method, filter)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
for method in methods3:
for filter in filters3[method]:
setting = [score_models[model] for model in filter[1:].split('_')]
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})'
cols = _get_method_aurocs(method, filter)
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
def report_maxlen_trends(args):
datasets = {'xsum': 'XSum',
'writing': 'WritingPrompts'}
source_models = {'gpt-3.5-turbo': 'ChatGPT',
'gpt-4': 'GPT-4'}
score_models = {'t5-11b': 'T5-11B',
'gpt2-xl': 'GPT-2',
'opt-2.7b': 'OPT-2.7',
'gpt-neo-2.7B': 'Neo-2.7',
'gpt-j-6B': 'GPT-J',
'gpt-neox-20b': 'NeoX'}
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base',
'roberta-large-openai-detector': 'RoBERTa-large'}
methods2 = {'likelihood': 'Likelihood'}
methods3 = {'perturbation_100': 'DetectGPT',
'sampling_discrepancy_analytic': 'Fast-Detect'}
maxlens = [30, 60, 90, 120, 150, 180]
def _get_method_aurocs(root_path, dataset, source_model, method, filter=''):
cols = []
for maxlen in maxlens:
result_file = f'{root_path}/exp_maxlen{maxlen}/results/{dataset}_{source_model}{filter}.{method}.json'
if os.path.exists(result_file):
auroc = get_auroc(result_file)
else:
auroc = 0.0
cols.append(auroc)
return cols
filters2 = {'likelihood': '.gpt-neo-2.7B'}
filters3 = {'perturbation_100': '.t5-11b_gpt-neo-2.7B',
'sampling_discrepancy_analytic': '.gpt-j-6B_gpt-neo-2.7B'}
headers = ['Method'] + [str(maxlen) for maxlen in maxlens]
print(' '.join(headers))
# print table per model and dataset
results = {}
for model in source_models:
model_name = source_models[model]
for data in datasets:
data_name = datasets[data]
print('----')
print(f'{model_name} / {data_name}')
print('----')
for method in methods1:
method_name = methods1[method]
cols = _get_method_aurocs('.', data, model, method)
results[f'{model_name}_{data_name}_{method_name}'] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
for method in methods2:
filter = filters2[method]
setting = score_models[filter[1:]]
method_name = f'{methods2[method]}({setting})'
cols = _get_method_aurocs('.', data, model, method, filter)
results[f'{model_name}_{data_name}_{method_name}'] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
for method in methods3:
filter = filters3[method]
setting = [score_models[model] for model in filter[1:].split('_')]
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})'
cols = _get_method_aurocs('.', data, model, method, filter)
results[f'{model_name}_{data_name}_{method_name}'] = cols
cols = [f'{col:.4f}' for col in cols]
print(method_name, ' '.join(cols))
import json
json_file = './exp_analysis/maxlen_trends.json'
with open(json_file, 'w') as fout:
json.dump(results, fout)
print(f'Write to file {json_file}')
def report_auroc_curve(args):
datasets = {'xsum': 'XSum',
'writing': 'WritingPrompts'}
source_models = {'gpt-3.5-turbo': 'ChatGPT',
'gpt-4': 'GPT-4'}
score_models = {'t5-11b': 'T5-11B',
'gpt2-xl': 'GPT-2',
'opt-2.7b': 'OPT-2.7',
'gpt-neo-2.7B': 'Neo-2.7',
'gpt-j-6B': 'GPT-J',
'gpt-neox-20b': 'NeoX'}
methods1 = {'roberta-base-openai-detector': 'RoBERTa-base',
'roberta-large-openai-detector': 'RoBERTa-large'}
methods2 = {'likelihood': 'Likelihood'}
methods3 = {'perturbation_100': 'DetectGPT',
'sampling_discrepancy_analytic': 'Fast-Detect'}
def _get_method_fpr_tpr(root_path, dataset, source_model, method, filter=''):
maxlen = 180
result_file = f'{root_path}/exp_maxlen{maxlen}/results/{dataset}_{source_model}{filter}.{method}.json'
if os.path.exists(result_file):
fpr, tpr = get_fpr_tpr(result_file)
else:
fpr, tpr = [], []
assert len(fpr) == len(tpr)
return list(zip(fpr, tpr))
filters2 = {'likelihood': '.gpt-neo-2.7B'}
filters3 = {'perturbation_100': '.t5-11b_gpt-neo-2.7B',
'sampling_discrepancy_analytic': '.gpt-j-6B_gpt-neo-2.7B'}
# print table per model and dataset
results = {}
for model in source_models:
model_name = source_models[model]
for data in datasets:
data_name = datasets[data]
print('----')
print(f'{model_name} / {data_name}')
print('----')
for method in methods1:
method_name = methods1[method]
cols = _get_method_fpr_tpr('.', data, model, method)
results[f'{model_name}_{data_name}_{method_name}'] = cols
cols = [f'({col[0]:.3f},{col[1]:.3f})' for col in cols]
print(method_name, ' '.join(cols))
for method in methods2:
filter = filters2[method]
setting = score_models[filter[1:]]
method_name = f'{methods2[method]}({setting})'
cols = _get_method_fpr_tpr('.', data, model, method, filter)
results[f'{model_name}_{data_name}_{method_name}'] = cols
cols = [f'({col[0]:.3f},{col[1]:.3f})' for col in cols]
print(method_name, ' '.join(cols))
for method in methods3:
filter = filters3[method]
setting = [score_models[model] for model in filter[1:].split('_')]
method_name = f'{methods3[method]}({setting[0]}/{setting[1]})'
cols = _get_method_fpr_tpr('.', data, model, method, filter)
results[f'{model_name}_{data_name}_{method_name}'] = cols
cols = [f'({col[0]:.3f},{col[1]:.3f})' for col in cols]
print(method_name, ' '.join(cols))
import json
json_file = './exp_analysis/auroc_curve.json'
with open(json_file, 'w') as fout:
json.dump(results, fout)
print(f'Write to file {json_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--result_path', type=str, default="./exp_main/results/")
parser.add_argument('--report_name', type=str, default="main_results")
args = parser.parse_args()
if args.report_name == 'main_results':
report_main_results(args)
elif args.report_name == 'main_ext_results':
report_main_ext_results(args)
elif args.report_name == 'chatgpt_gpt4_results':
report_chatgpt_gpt4_results(args)
elif args.report_name == 'gpt3_results':
report_gpt3_results(args)
elif args.report_name == 'maxlen_trends':
report_maxlen_trends(args)
elif args.report_name == 'auroc_curve':
report_auroc_curve(args)
elif args.report_name == 'refmodel_results':
report_refmodel_results(args)