fast_detect_gpt / gptzero.py
azra-kml's picture
Upload 30 files
aefc9ef verified
raw
history blame
3.29 kB
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import time
import numpy as np
import tqdm
import argparse
import json
from metrics import get_roc_metrics, get_precision_recall_metrics
from data_builder import load_data
def detect_gptzero(args, text):
import requests
url = "https://api.gptzero.me/v2/predict/text"
payload = {
"document": text,
"version": "2023-09-14"
}
headers = {
"Accept": "application/json",
"content-type": "application/json",
"x-api-key": ""
}
while True:
try:
time.sleep(600) # 1 request per 10 minutes for free access
response = requests.post(url, json=payload, headers=headers)
return response.json()['documents'][0]['completely_generated_prob']
except Exception as ex:
print(ex)
def experiment(args):
# load data
data = load_data(args.dataset_file)
n_samples = len(data["sampled"])
# evaluate criterion
name = "gptzero"
criterion_fn = detect_gptzero
results = []
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"):
original_text = data["original"][idx]
sampled_text = data["sampled"][idx]
original_crit = criterion_fn(args, original_text)
sampled_crit = criterion_fn(args, sampled_text)
# result
results.append({"original": original_text,
"original_crit": original_crit,
"sampled": sampled_text,
"sampled_crit": sampled_crit})
# compute prediction scores for real/sampled passages
predictions = {'real': [x["original_crit"] for x in results],
'samples': [x["sampled_crit"] for x in results]}
print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}")
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples'])
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples'])
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}")
# results
results_file = f'{args.output_file}.{name}.json'
results = { 'name': f'{name}_threshold',
'info': {'n_samples': n_samples},
'predictions': predictions,
'raw_results': results,
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr},
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r},
'loss': 1 - pr_auc}
with open(results_file, 'w') as fout:
json.dump(results, fout)
print(f'Results written into {results_file}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--output_file', type=str, default="./exp_gpt3to4/results/xsum_gpt-4")
parser.add_argument('--dataset', type=str, default="xsum")
parser.add_argument('--dataset_file', type=str, default="./exp_gpt3to4/data/xsum_gpt-4")
args = parser.parse_args()
experiment(args)