Spaces:
Running
Running
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import time | |
import numpy as np | |
import tqdm | |
import argparse | |
import json | |
from metrics import get_roc_metrics, get_precision_recall_metrics | |
from data_builder import load_data | |
def detect_gptzero(args, text): | |
import requests | |
url = "https://api.gptzero.me/v2/predict/text" | |
payload = { | |
"document": text, | |
"version": "2023-09-14" | |
} | |
headers = { | |
"Accept": "application/json", | |
"content-type": "application/json", | |
"x-api-key": "" | |
} | |
while True: | |
try: | |
time.sleep(600) # 1 request per 10 minutes for free access | |
response = requests.post(url, json=payload, headers=headers) | |
return response.json()['documents'][0]['completely_generated_prob'] | |
except Exception as ex: | |
print(ex) | |
def experiment(args): | |
# load data | |
data = load_data(args.dataset_file) | |
n_samples = len(data["sampled"]) | |
# evaluate criterion | |
name = "gptzero" | |
criterion_fn = detect_gptzero | |
results = [] | |
for idx in tqdm.tqdm(range(n_samples), desc=f"Computing {name} criterion"): | |
original_text = data["original"][idx] | |
sampled_text = data["sampled"][idx] | |
original_crit = criterion_fn(args, original_text) | |
sampled_crit = criterion_fn(args, sampled_text) | |
# result | |
results.append({"original": original_text, | |
"original_crit": original_crit, | |
"sampled": sampled_text, | |
"sampled_crit": sampled_crit}) | |
# compute prediction scores for real/sampled passages | |
predictions = {'real': [x["original_crit"] for x in results], | |
'samples': [x["sampled_crit"] for x in results]} | |
print(f"Real mean/std: {np.mean(predictions['real']):.2f}/{np.std(predictions['real']):.2f}, Samples mean/std: {np.mean(predictions['samples']):.2f}/{np.std(predictions['samples']):.2f}") | |
fpr, tpr, roc_auc = get_roc_metrics(predictions['real'], predictions['samples']) | |
p, r, pr_auc = get_precision_recall_metrics(predictions['real'], predictions['samples']) | |
print(f"Criterion {name}_threshold ROC AUC: {roc_auc:.4f}, PR AUC: {pr_auc:.4f}") | |
# results | |
results_file = f'{args.output_file}.{name}.json' | |
results = { 'name': f'{name}_threshold', | |
'info': {'n_samples': n_samples}, | |
'predictions': predictions, | |
'raw_results': results, | |
'metrics': {'roc_auc': roc_auc, 'fpr': fpr, 'tpr': tpr}, | |
'pr_metrics': {'pr_auc': pr_auc, 'precision': p, 'recall': r}, | |
'loss': 1 - pr_auc} | |
with open(results_file, 'w') as fout: | |
json.dump(results, fout) | |
print(f'Results written into {results_file}') | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_file', type=str, default="./exp_gpt3to4/results/xsum_gpt-4") | |
parser.add_argument('--dataset', type=str, default="xsum") | |
parser.add_argument('--dataset_file', type=str, default="./exp_gpt3to4/data/xsum_gpt-4") | |
args = parser.parse_args() | |
experiment(args) | |