File size: 4,324 Bytes
aefc9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) Guangsheng Bao.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random

import numpy as np
import torch
import os
import glob
import argparse
import json
from scripts.model import load_tokenizer, load_model
from scripts.fast_detect_gpt import get_sampling_discrepancy_analytic


# estimate the probability according to the distribution of our test results on ChatGPT and GPT-4
class ProbEstimator:
    def __init__(self, args):
        self.real_crits = []
        self.fake_crits = []
        for result_file in glob.glob(os.path.join(args.ref_path, '*.json')):
            with open(result_file, 'r') as fin:
                res = json.load(fin)
                self.real_crits.extend(res['predictions']['real'])
                self.fake_crits.extend(res['predictions']['samples'])
        print(f'ProbEstimator: total {len(self.real_crits) * 2} samples.')


    def crit_to_prob(self, crit):
        offset = np.sort(np.abs(np.array(self.real_crits + self.fake_crits) - crit))[100]
        cnt_real = np.sum((np.array(self.real_crits) > crit - offset) & (np.array(self.real_crits) < crit + offset))
        cnt_fake = np.sum((np.array(self.fake_crits) > crit - offset) & (np.array(self.fake_crits) < crit + offset))
        return cnt_fake / (cnt_real + cnt_fake)

# run interactive local inference
def run(args):
    # load model
    scoring_tokenizer = load_tokenizer(args.scoring_model_name, args.dataset, args.cache_dir)
    scoring_model = load_model(args.scoring_model_name, args.device, args.cache_dir)
    scoring_model.eval()
    if args.reference_model_name != args.scoring_model_name:
        reference_tokenizer = load_tokenizer(args.reference_model_name, args.dataset, args.cache_dir)
        reference_model = load_model(args.reference_model_name, args.device, args.cache_dir)
        reference_model.eval()
    # evaluate criterion
    name = "sampling_discrepancy_analytic"
    criterion_fn = get_sampling_discrepancy_analytic
    prob_estimator = ProbEstimator(args)
    # input text
    print('Local demo for Fast-DetectGPT, where the longer text has more reliable result.')
    print('')
    while True:
        print("Please enter your text: (Press Enter twice to start processing)")
        lines = []
        while True:
            line = input()
            if len(line) == 0:
                break
            lines.append(line)
        text = "\n".join(lines)
        if len(text) == 0:
            break
        # evaluate text
        tokenized = scoring_tokenizer(text, truncation=True, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
        labels = tokenized.input_ids[:, 1:]
        with torch.no_grad():
            logits_score = scoring_model(**tokenized).logits[:, :-1]
            if args.reference_model_name == args.scoring_model_name:
                logits_ref = logits_score
            else:
                tokenized = reference_tokenizer(text, truncation=True, return_tensors="pt", padding=True, return_token_type_ids=False).to(args.device)
                assert torch.all(tokenized.input_ids[:, 1:] == labels), "Tokenizer is mismatch."
                logits_ref = reference_model(**tokenized).logits[:, :-1]
            crit = criterion_fn(logits_ref, logits_score, labels)
        # estimate the probability of machine generated text
        prob = prob_estimator.crit_to_prob(crit)
        print(f'Fast-DetectGPT criterion is {crit:.4f}, suggesting that the text has a probability of {prob * 100:.0f}% to be machine-generated.')
        print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--reference_model_name', type=str, default="gpt-neo-2.7B")  # use gpt-j-6B for more accurate detection
    parser.add_argument('--scoring_model_name', type=str, default="gpt-neo-2.7B")
    parser.add_argument('--dataset', type=str, default="xsum")
    parser.add_argument('--ref_path', type=str, default="./local_infer_ref")
    parser.add_argument('--device', type=str, default="cuda")
    parser.add_argument('--cache_dir', type=str, default="../cache")
    args = parser.parse_args()

    run(args)