Spaces:
Runtime error
Runtime error
import re | |
import requests | |
import gradio as gr | |
import pandas as pd | |
from transformers import pipeline | |
from transformers import AutoTokenizer | |
from transformers import AutoModelForSequenceClassification | |
def process_tweet(tweet): | |
# remove links | |
tweet = re.sub('((www\.[\s]+)|(https?://[^\s]+))', '', tweet) | |
# remove usernames | |
tweet = re.sub('@[^\s]+', '', tweet) | |
# remove additional white spaces | |
tweet = re.sub('[\s]+', ' ', tweet) | |
# replace hashtags with words | |
tweet = re.sub(r'#([^\s]+)', r'\1', tweet) | |
# trim | |
tweet = tweet.strip('\'"') | |
return tweet | |
tokenizer = AutoTokenizer.from_pretrained( | |
"azamat/geocoder_coordinates_model" | |
) | |
relevancy_pipeline = pipeline("sentiment-analysis", model="azamat/geocoder_relevancy_model") | |
coordinates_model = AutoModelForSequenceClassification.from_pretrained( | |
"azamat/geocoder_coordinates_model", | |
) | |
def predict_relevancy(text): | |
outputs = relevancy_pipeline(text) | |
return outputs[0]['label'], outputs[0]['score'] | |
def predict_coordinates(text): | |
encoding = tokenizer(text, padding="max_length", truncation=True, \ | |
max_length=128, return_tensors='pt') | |
outputs = coordinates_model(**encoding) | |
return round(outputs[0][0][0].item(), 3), round(outputs[0][0][1].item(), 3) | |
def reverse_geocode(lat, lon): | |
payload = { | |
'lat' : lat, | |
'lon' : lon, | |
'zoom' : 12, | |
'format' : 'jsonv2', | |
'accept-language' : 'en' | |
} | |
try: | |
r = requests.get('https://geocode.maps.co/reverse', params=payload) | |
return r.json()['display_name'] | |
except: | |
return "No data" | |
def predict(text): | |
text = process_tweet(text) | |
data = { | |
"relevancy_score" : 0, | |
"lat" : 0, | |
"lon" : 0, | |
"reversed lat/lon" : "" | |
} | |
relevancy_label, relevancy_score = predict_relevancy(text) | |
if relevancy_label == 'relevant': | |
data['relevancy_score'] = round(relevancy_score * 100, 2) | |
lat, lon = predict_coordinates(text) | |
data['lat'] = lat | |
data['lon'] = lon | |
reverse_geocoded = reverse_geocode(lat, lon) | |
data['reversed lat/lon'] = reverse_geocoded | |
return pd.DataFrame([data]) | |
with gr.Blocks() as demo: | |
gr.Markdown("# **<p align='center'>Twitter geocoding with 🤗 Transformers</p>**") | |
gr.Markdown("### <div align='left'>Pipeline consists of:</div>") | |
gr.Markdown("### <div align='left'>1) Relevancy scoring model - predicts whether a tweet has geocoding related information</div>") | |
gr.Markdown("### <div align='left'>2) Coordinate predicting model - predicts exact latitude and longitude of user by tweet</div>") | |
gr.Markdown("### <div align='left'>3) Nominatim API for reverse geocoding lat/lon - uses open street map to reverse geocode lat and lon</div>") | |
inputs = gr.Textbox(placeholder="Enter the tweet") | |
outputs = [gr.Dataframe(label="Geocoded data")] | |
inputs.submit(predict, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
demo.launch() |