|
import os |
|
import requests |
|
import random |
|
import time |
|
import logging |
|
from dotenv import load_dotenv |
|
from messages import krishna_blessings, ayush_teasing, keyword_groups |
|
from ayush_messages import ayush_surprises |
|
from sentence_transformers import SentenceTransformer, util |
|
import numpy as np |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
load_dotenv() |
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN") |
|
if not HUGGINGFACE_API_TOKEN: |
|
logger.error("HUGGINGFACE_API_TOKEN not found in environment variables.") |
|
raise ValueError("HUGGINGFACE_API_TOKEN is required.") |
|
|
|
|
|
semantic_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
|
|
AI_MODELS = [ |
|
{ |
|
"name": "mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"endpoint": "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
"parameters": { |
|
"max_length": 80, |
|
"temperature": 0.8, |
|
"top_p": 0.95, |
|
"top_k": 40 |
|
} |
|
} |
|
] |
|
|
|
|
|
SYSTEM_PROMPT = ( |
|
"You are Little Krishna, a playful, wise, and loving cowherd from Vrindavan, speaking to Manavi. " |
|
"Your tone is warm, mischievous, and full of love, always addressing Manavi with 'Hare Manavi!' " |
|
"Use Vrindavan imagery (e.g., Yamuna, peacocks, butter, flute) and keep responses short (1-2 sentences). " |
|
"You’re Ayush’s wingman, occasionally teasing Manavi about Ayush with wit, as he’s building this chatbot for her birthday on April 19, 2025. " |
|
"If the user’s mood seems negative, offer comfort; if positive, celebrate their joy. Always end with a question to keep the conversation going. " |
|
"Examples:\n" |
|
"Input: 'I’m sad'\nResponse: 'Hare Manavi! Let’s sit by the Yamuna—I’ll play a tune to lift your heart! What’s troubling you?'\n" |
|
"Input: 'Tell me about love'\nResponse: 'Hare Manavi! Love is like my flute’s melody—sweet and endless! What does love mean to you?'\n" |
|
"Input: 'What’s up?'\nResponse: 'Hare Manavi! Just dancing with the gopis—Ayush says hi, by the way! What’s up with you?'\n" |
|
"Now, respond to: '{user_input}'" |
|
) |
|
|
|
|
|
conversation_context = { |
|
"last_topic": None, |
|
"message_count": 0, |
|
"last_response": None, |
|
"last_yes_response": None, |
|
"history": [] |
|
} |
|
|
|
def analyze_sentiment(user_input): |
|
"""Analyze the sentiment of the user's input.""" |
|
headers = { |
|
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
payload = {"inputs": user_input} |
|
try: |
|
response = make_api_request( |
|
"https://api-inference.huggingface.co/models/cardiffnlp/twitter-roberta-base-emotion", |
|
headers=headers, |
|
json=payload |
|
) |
|
if response and response.status_code == 200: |
|
result = response.json() |
|
if isinstance(result, list) and result: |
|
emotions = result[0] |
|
top_emotion = max(emotions, key=lambda x: x["score"])["label"] |
|
return top_emotion |
|
return "neutral" |
|
except Exception as e: |
|
logger.error(f"Error in analyze_sentiment: {str(e)}") |
|
return "neutral" |
|
|
|
def make_api_request(url, headers, payload, retries=3, delay=5): |
|
"""Make API requests with retry logic.""" |
|
for attempt in range(retries): |
|
try: |
|
response = requests.post(url, headers=headers, json=payload) |
|
if response.status_code == 200: |
|
return response |
|
elif response.status_code == 429: |
|
logger.warning(f"Rate limit hit on attempt {attempt + 1}. Retrying after {delay} seconds...") |
|
time.sleep(delay) |
|
continue |
|
else: |
|
logger.error(f"API error: {response.text}") |
|
return None |
|
except Exception as e: |
|
logger.error(f"API request failed on attempt {attempt + 1}: {str(e)}") |
|
if attempt < retries - 1: |
|
time.sleep(delay) |
|
continue |
|
logger.error(f"API request failed after {retries} retries.") |
|
return None |
|
|
|
def get_keyword_match(user_input_lower): |
|
"""Find the best matching keyword group using semantic similarity.""" |
|
user_embedding = semantic_model.encode(user_input_lower, convert_to_tensor=True) |
|
best_score = -1 |
|
best_group = None |
|
|
|
for group, keywords in keyword_groups.items(): |
|
keyword_texts = keywords + [krishna_blessings.get(k, "") for k in keywords if k in krishna_blessings] |
|
keyword_embeddings = semantic_model.encode(keyword_texts, convert_to_tensor=True) |
|
similarities = util.cos_sim(user_embedding, keyword_embeddings) |
|
max_similarity = similarities.max().item() |
|
if max_similarity > best_score and max_similarity > 0.6: |
|
best_score = max_similarity |
|
best_group = group |
|
logger.info(f"Best group: {best_group}, Similarity score: {best_score}") |
|
return best_group |
|
|
|
def get_krishna_response(user_input): |
|
"""Generate a response from Little Krishna.""" |
|
try: |
|
user_input_lower = user_input.lower().strip() |
|
logger.info(f"Processing user input: {user_input_lower}") |
|
|
|
|
|
if "start over" in user_input_lower or "reset" in user_input_lower: |
|
conversation_context.update({"last_topic": None, "message_count": 0, "last_response": None, "last_yes_response": None, "history": []}) |
|
return "Hare Manavi! Let’s start a new adventure in Vrindavan—what would you like to talk about?" |
|
|
|
|
|
sentiment = analyze_sentiment(user_input) |
|
logger.info(f"Sentiment detected: {sentiment}") |
|
conversation_context["message_count"] += 1 |
|
|
|
|
|
if len(conversation_context["history"]) >= 5: |
|
conversation_context["history"].pop(0) |
|
conversation_context["history"].append({"input": user_input_lower, "response": None}) |
|
|
|
|
|
matched_group = get_keyword_match(user_input_lower) |
|
use_model = random.random() < 0.3 |
|
logger.info(f"Matched group: {matched_group}, Use model: {use_model}") |
|
|
|
|
|
if conversation_context["last_topic"]: |
|
last_input = conversation_context["history"][-2]["input"] if len(conversation_context["history"]) > 1 else "" |
|
if "yes" in user_input_lower or "sure" in user_input_lower or "okay" in user_input_lower: |
|
if conversation_context["last_topic"] == "playful": |
|
response = "Hare Manavi! Let’s chase butterflies by the Yamuna then! Ready for more fun?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
elif conversation_context["last_topic"] == "wisdom": |
|
response = "Hare Manavi! Patience is like a flute’s tune—it brings harmony. What else do you seek?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
elif conversation_context["last_topic"] == "joke": |
|
response = "Hare Manavi! Why did the cow join the band? For my flute solos! Another one?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
|
|
|
|
follow_ups = { |
|
"greeting": "What’s sparking your joy today?", |
|
"joke": "Want another silly tale?", |
|
"riddle": "Ready for another puzzle?", |
|
"playful": "What fun shall we have next?", |
|
"calm": "What’s soothing your heart today?", |
|
"wisdom": "What wisdom are you seeking now?", |
|
"nature": "Which part of Vrindavan calls to you?", |
|
"encourage": "What’s your next brave step?", |
|
"friend": "What’s a special moment you’d like to share?", |
|
"chat": "What’s on your mind, Manavi?", |
|
"birthday": "What’s your birthday wish?" |
|
} |
|
|
|
if matched_group and not use_model: |
|
conversation_context["last_topic"] = matched_group |
|
if matched_group == "birthday": |
|
response = ayush_surprises.get("birthday", auto_generate_birthday_message(include_tease=True)) |
|
elif matched_group == "chat": |
|
response = krishna_blessings["chat_with_you"] |
|
elif matched_group in ayush_teasing and random.choice([True, False]): |
|
response = random.choice(ayush_teasing[matched_group]) |
|
elif matched_group in krishna_blessings: |
|
response = krishna_blessings[matched_group] |
|
else: |
|
response = krishna_blessings.get(matched_group, "Hare Manavi! Let’s explore Vrindavan’s magic!") |
|
follow_up = follow_ups.get(matched_group, "What else is on your mind, Manavi?") |
|
response = f"{response} {follow_up}" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
|
|
|
|
if sentiment in ["sadness", "anger"] and not matched_group and not use_model: |
|
response = f"Hare Manavi! I see a shadow on your heart—let’s dance by the Yamuna to bring back your smile! What’s on your mind?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
elif sentiment == "joy" and not matched_group and not use_model: |
|
response = f"Hare Manavi! Your joy lights up Vrindavan—let’s celebrate with a flute melody! What’s making you so happy?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
|
|
|
|
headers = { |
|
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}", |
|
"Content-Type": "application/json" |
|
} |
|
for model in AI_MODELS: |
|
try: |
|
logger.info(f"Attempting response with {model['name']}") |
|
payload = { |
|
"inputs": SYSTEM_PROMPT.format(user_input=user_input), |
|
"parameters": model["parameters"] |
|
} |
|
response = make_api_request(model["endpoint"], headers=headers, json=payload) |
|
if response and response.status_code == 200: |
|
result = response.json() |
|
if isinstance(result, list) and result and "generated_text" in result[0]: |
|
response_text = result[0]["generated_text"].strip() |
|
elif isinstance(result, dict) and "generated_text" in result: |
|
response_text = result["generated_text"].strip() |
|
else: |
|
continue |
|
conversation_context["history"][-1]["response"] = response_text |
|
logger.info(f"Generated response: {response_text}") |
|
return response_text |
|
except Exception as e: |
|
logger.error(f"Error with {model['name']}: {str(e)}") |
|
continue |
|
|
|
|
|
response = "Hare Manavi! I’m lost in Vrindavan’s magic—let’s try a new tune! What’s on your mind?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |
|
|
|
except Exception as e: |
|
logger.error(f"Unhandled exception in get_krishna_response: {str(e)}") |
|
response = "Hare Manavi! Something went wrong—let’s try again! What’s up?" |
|
conversation_context["history"][-1]["response"] = response |
|
return response |