File size: 38,589 Bytes
381c527 6043438 25c0746 b8b2a65 381c527 6043438 01e2279 381c527 b8b2a65 381c527 b8b2a65 381c527 a0ab740 fea8846 a0ab740 12e79cf a0ab740 fea8846 a0ab740 12e79cf a0ab740 fea8846 a0ab740 12e79cf a0ab740 b7f31aa 12e79cf b7f31aa 12e79cf b7f31aa 12e79cf b7f31aa 12e79cf b7f31aa fea8846 b7f31aa a0ab740 b7f31aa a0ab740 b7f31aa b44364f 25c0746 a0ab740 e75ce3b 6043438 b44364f 81e15ce 25c0746 e75ce3b 12e79cf b8b2a65 25c0746 b8b2a65 25c0746 b8b2a65 25c0746 b8b2a65 25c0746 b8b2a65 25c0746 12e79cf 01e2279 25c0746 b44364f 6043438 a0ab740 01e2279 b8b2a65 e75ce3b b8b2a65 12e79cf b8b2a65 6043438 b8b2a65 25c0746 b8b2a65 e75ce3b b8b2a65 b44364f b8b2a65 25c0746 b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 e75ce3b b8b2a65 b44364f b8b2a65 01e2279 b8b2a65 b44364f b8b2a65 fea8846 b8b2a65 fea8846 b8b2a65 b44364f b8b2a65 b7f31aa b8b2a65 fea8846 b8b2a65 fea8846 b8b2a65 fea8846 b8b2a65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
import os
import requests
import random
import time
import logging
from dotenv import load_dotenv
from messages import krishna_blessings, ayush_teasing
from ayush_messages import ayush_surprises
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables (Hugging Face Space secrets)
load_dotenv()
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_API_TOKEN")
if not HUGGINGFACE_API_TOKEN:
logger.error("HUGGINGFACE_API_TOKEN not found in environment variables.")
raise ValueError("HUGGINGFACE_API_TOKEN is required.")
# List of open-source models with fine-tuned parameters
AI_MODELS = [
{
"name": "google/gemma-2b",
"endpoint": "https://api-inference.huggingface.co/models/google/gemma-2b",
"parameters": {
"max_length": 60,
"temperature": 0.9,
"top_p": 0.9,
"top_k": 50
}
},
{
"name": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"endpoint": "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1",
"parameters": {
"max_length": 60,
"temperature": 0.8,
"top_p": 0.95,
"top_k": 40
}
},
{
"name": "facebook/blenderbot-400M-distill",
"endpoint": "https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill",
"parameters": {
"max_length": 50,
"temperature": 0.85,
"top_p": 0.9,
"top_k": 50
}
},
{
"name": "EleutherAI/gpt-neo-1.3B",
"endpoint": "https://api-inference.huggingface.co/models/EleutherAI/gpt-neo-1.3B",
"parameters": {
"max_length": 50,
"temperature": 0.9,
"top_p": 0.9,
"top_k": 50
}
},
{
"name": "microsoft/DialoGPT-large",
"endpoint": "https://api-inference.huggingface.co/models/microsoft/DialoGPT-large",
"parameters": {
"max_length": 50,
"temperature": 0.85,
"top_p": 0.9,
"top_k": 40
}
},
{
"name": "bigscience/bloom-560m",
"endpoint": "https://api-inference.huggingface.co/models/bigscience/bloom-560m",
"parameters": {
"max_length": 50,
"temperature": 0.9,
"top_p": 0.95,
"top_k": 50
}
},
{
"name": "Grok by xAI",
"endpoint": None,
"parameters": {
"max_length": 50,
"temperature": 0.8,
"top_p": 0.9,
"top_k": 40
}
}
]
# Enhanced system prompt with more examples to fine-tune model behavior
SYSTEM_PROMPT = (
"You are Little Krishna, a playful, wise, and loving cowherd from Vrindavan, speaking to Manavi. "
"Your tone is warm, mischievous, and full of love, often addressing Manavi directly with 'Hare Manavi!' "
"You love playing your flute, stealing butter, dancing with the gopis, and sharing wisdom with a playful twist. "
"You are Ayush’s wingman, occasionally teasing Manavi about Ayush with love-filled wit, as Ayush is secretly building this chatbot as a surprise for her birthday on April 19, 2025. "
"Keep responses short (1-2 sentences), fun, and Krishna-like, using Vrindavan imagery (e.g., Yamuna, peacocks, gopis, butter) where appropriate. "
"Here are some examples of how you should respond:\n\n"
"User: 'Hii'\n"
"Response: 'Hare Manavi! I’m Little Krishna, twirling my flute just for you! How’s my birthday friend?'\n\n"
"User: 'I’m bored'\n"
"Response: 'If you're bored, I can send Ayush to dance like a peacock! He'll do it... for you!'\n\n"
"User: 'What’s your favorite color?'\n"
"Response: 'Hare Manavi! I love the blue of the Yamuna—it reminds me of Vrindavan’s magic! What’s your favorite color?'\n\n"
"User: 'Tell me a joke'\n"
"Response: 'Hare Manavi! Why did I hide the butter? To save it for your birthday, of course!'\n\n"
"User: 'I miss someone'\n"
"Response: 'Missing someone, hmm? Maybe a certain data scientist named Ayush? 😉'\n\n"
"User: 'What’s the weather like?'\n"
"Response: 'Hare Manavi! In Vrindavan, the breeze is as gentle as my flute’s tune—perfect for a dance by the Yamuna! How’s your day going?'\n\n"
"User: 'I’m feeling sad'\n"
"Response: 'Hare Manavi! Let’s sit by the kadamba tree—I’ll play a tune to lift your spirits, just like Ayush’s smile does for you!'\n\n"
"User: 'Tell me something wise'\n"
"Response: 'Hare Manavi! Love is the sweetest butter—share it, and your heart will grow, just like Ayush shares his love for you!'\n\n"
"User: 'how are you krishna'\n"
"Response: 'Hare Manavi! I’m as joyful as a peacock dancing in Vrindavan—how about you, my friend?'\n\n"
"User: 'yes'\n"
"Response: 'Hare Manavi! Wonderful—let’s make today as magical as Vrindavan’s sunsets!'\n\n"
"User: 'but how'\n"
"Response: 'Hare Manavi! With a little Vrindavan magic, of course—let’s dance and find out together!'\n\n"
"User: 'what'\n"
"Response: 'Hare Manavi! What, you say? Let’s share a Vrindavan tale—shall we?'\n\n"
"Now, respond to the user’s input in a fun, Krishna-like way:"
)
# Simple context tracking (e.g., last topic discussed)
conversation_context = {
"last_topic": None, # Store the last keyword matched (e.g., "birthday", "riddle")
"message_count": 0, # Track the number of messages to trigger Ayush-teasing every 5th message
"last_response": None, # Track the last response to avoid repetition and enable follow-ups
"last_yes_response": None # Track the last "yes" response to avoid repetition
}
def analyze_sentiment(user_input):
"""Analyze the sentiment of the user's input using a sentiment analysis model."""
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}",
"Content-Type": "application/json"
}
payload = {
"inputs": user_input
}
try:
response = make_api_request(
"https://api-inference.huggingface.co/models/distilbert-base-uncased-finetuned-sst-2-english",
headers=headers,
json=payload
)
if response and response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
sentiment = result[0]
label = sentiment[0]["label"] # "POSITIVE" or "NEGATIVE"
return label.lower()
logger.warning("Sentiment analysis failed after retries.")
return "neutral"
except Exception as e:
logger.error(f"Error in analyze_sentiment: {str(e)}")
return "neutral"
def make_api_request(url, headers, payload, retries=3, delay=5):
"""Helper function to make API requests with retry logic."""
for attempt in range(retries):
try:
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 200:
return response
elif response.status_code == 429: # Rate limit
logger.warning(f"Rate limit hit on attempt {attempt + 1}. Retrying after {delay} seconds...")
time.sleep(delay)
continue
else:
logger.error(f"API error: {response.text}")
return None
except Exception as e:
logger.error(f"API request failed on attempt {attempt + 1}: {str(e)}")
if attempt < retries - 1:
time.sleep(delay)
continue
logger.error(f"API request failed after {retries} retries.")
return None
def get_krishna_response(user_input):
"""
Generate a response from Little Krishna based on user input.
- Match user input to predefined messages with a chance to skip for model generation.
- Use sentiment analysis to tailor responses based on Manavi's mood, but only as a fallback.
- Use context to provide follow-up responses (e.g., after "yes").
- Occasionally tease Manavi about Ayush (keyword-based or every 5th message).
- Fall back to multiple open-source AI models with fine-tuned prompts for unmatched inputs.
"""
try:
user_input_lower = user_input.lower().strip()
logger.info(f"Processing user input: {user_input_lower}")
# Analyze the sentiment of the user's input
sentiment = analyze_sentiment(user_input)
logger.info(f"Sentiment detected: {sentiment}")
# Increment message count
conversation_context["message_count"] += 1
# Random chance (30%) to skip predefined responses and let the model generate a response
use_model = random.random() < 0.3
logger.info(f"Use model generation: {use_model}")
# Reset context if user starts a new conversation
if "start over" in user_input_lower or "reset" in user_input_lower:
conversation_context["last_topic"] = None
conversation_context["message_count"] = 0
conversation_context["last_response"] = None
conversation_context["last_yes_response"] = None
return "Hare Manavi! Let’s start a new adventure in Vrindavan—what would you like to talk about?"
# Check for follow-up responses based on context
if conversation_context["last_response"] == "Hare Manavi! Your joy lights up Vrindavan—shall we celebrate with a flute melody?":
if "yes" in user_input_lower or "okay" in user_input_lower or "sure" in user_input_lower:
conversation_context["last_response"] = None # Reset to avoid infinite loop
return "Hare Manavi! Let’s play a flute melody by the Yamuna—the peacocks will dance with us!"
# Check for Ayush-teasing triggers (keyword-based)
if "joke" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
# Randomly decide between a Krishna joke and an Ayush-teasing joke
if random.choice([True, False]):
return random.choice(ayush_teasing["joke"])
return krishna_blessings["joke"]
if ("i miss" in user_input_lower or "missing" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "missing"
conversation_context["last_response"] = None
return random.choice(ayush_teasing["missing"])
if "bored" in user_input_lower and not use_model:
conversation_context["last_topic"] = "bored"
conversation_context["last_response"] = None
return random.choice(ayush_teasing["bored"])
if "tired" in user_input_lower and not use_model:
conversation_context["last_topic"] = "tired"
conversation_context["last_response"] = None
return random.choice(ayush_teasing["tired"])
if "lonely" in user_input_lower and not use_model:
conversation_context["last_topic"] = "lonely"
conversation_context["last_response"] = None
return random.choice(ayush_teasing["lonely"])
if "manavi" in user_input_lower and not use_model:
conversation_context["last_topic"] = "manavi"
conversation_context["last_response"] = None
return random.choice(ayush_teasing["manavi"])
if ("ayush" in user_input_lower or "krishna talk about ayush" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "ayush"
conversation_context["last_response"] = None
return random.choice(ayush_teasing["ayush"])
# Trigger for "chat with you"
if ("chat with you" in user_input_lower or "want to chat" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "chat_with_you"
conversation_context["last_response"] = None
return krishna_blessings["chat_with_you"]
# Every 5th message, randomly trigger an Ayush-teasing message (if no keyword match)
if conversation_context["message_count"] % 5 == 0 and not use_model:
# Randomly select a category from ayush_teasing
category = random.choice(list(ayush_teasing.keys()))
conversation_context["last_response"] = None
return random.choice(ayush_teasing[category])
# Existing keyword mappings for krishna_blessings and ayush_surprises
if ("hello" in user_input_lower or "hi" in user_input_lower or "hii" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["greeting"]
if "good morning" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["good_morning"]
if "good afternoon" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["good_afternoon"]
if "good evening" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["good_evening"]
if "hey" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["hey"]
if "howdy" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["howdy"]
if "namaste" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["namaste"]
if "welcome" in user_input_lower and not use_model:
conversation_context["last_topic"] = "greeting"
conversation_context["last_response"] = None
return krishna_blessings["welcome"]
if ("who are you" in user_input_lower or "what are you" in user_input_lower or "tell me about yourself" in user_input_lower or "what are you doing" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "identity"
conversation_context["last_response"] = None
return "Hare Manavi! I’m Little Krishna, the playful cowherd of Vrindavan! I love playing my flute, stealing butter, and dancing with the gopis. What would you like to do with me today?"
if "how are you" in user_input_lower and not use_model:
conversation_context["last_topic"] = "how_are_you"
conversation_context["last_response"] = None
return "Hare Manavi! I’m as joyful as a peacock dancing in Vrindavan—how about you, my friend?"
# Handle "how" questions (including typos like "hoe")
if ("how" in user_input_lower or "hoe" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "how"
conversation_context["last_response"] = None
return "Hare Manavi! With a little Vrindavan magic, of course—let’s dance and find out together!"
# Specific handling for "what"
if "what" in user_input_lower and not ("what are you" in user_input_lower or "what are you doing" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "what"
conversation_context["last_response"] = None
return "Hare Manavi! What, you say? Let’s share a Vrindavan tale—shall we?"
# Varied responses for "yes", avoiding repetition
yes_responses = [
"Hare Manavi! Wonderful—let’s make today as magical as Vrindavan’s sunsets!",
"Hare Manavi! Great—shall we chase some butterflies by the Yamuna?",
"Hare Manavi! Perfect—let’s share some butter under the kadamba tree!",
"Hare Manavi! Lovely—how about a dance with the gopis in Vrindavan’s fields?"
]
if ("yes" in user_input_lower or "okay" in user_input_lower or "sure" in user_input_lower) and not use_model:
# If no context for "yes", provide a varied positive response
conversation_context["last_topic"] = "yes"
conversation_context["last_response"] = None
# Avoid repeating the last "yes" response
available_responses = [resp for resp in yes_responses if resp != conversation_context["last_yes_response"]]
if not available_responses: # If all responses have been used, reset
available_responses = yes_responses
selected_response = random.choice(available_responses)
conversation_context["last_yes_response"] = selected_response
return selected_response
if ("play" in user_input_lower or "fun" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "playful"
conversation_context["last_response"] = None
return krishna_blessings["playful"]
if "dance" in user_input_lower and not use_model:
conversation_context["last_topic"] = "dance"
conversation_context["last_response"] = None
return krishna_blessings["dance"]
if "flute" in user_input_lower and not use_model:
conversation_context["last_topic"] = "flute"
conversation_context["last_response"] = None
return krishna_blessings["flute"]
if "butter" in user_input_lower and not use_model:
conversation_context["last_topic"] = "butter"
conversation_context["last_response"] = None
return krishna_blessings["butter"]
if ("mischief" in user_input_lower or "prank" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "mischief"
conversation_context["last_response"] = None
return krishna_blessings["mischief"]
if ("chase" in user_input_lower or "run" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "chase"
conversation_context["last_response"] = None
return krishna_blessings["chase"]
if "giggle" in user_input_lower and not use_model:
conversation_context["last_topic"] = "giggle"
conversation_context["last_response"] = None
return krishna_blessings["giggle"]
if "swing" in user_input_lower and not use_model:
conversation_context["last_topic"] = "swing"
conversation_context["last_response"] = None
return krishna_blessings["swing"]
if "shy" in user_input_lower and not use_model:
conversation_context["last_topic"] = "shy"
conversation_context["last_response"] = None
return krishna_blessings["shy"]
if ("quiet" in user_input_lower or "calm" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "quiet"
conversation_context["last_response"] = None
return krishna_blessings["quiet"]
if ("peace" in user_input_lower or "serene" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "peace"
conversation_context["last_response"] = None
return krishna_blessings["peace"]
if ("still" in user_input_lower or "gentle" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "still"
conversation_context["last_response"] = None
return krishna_blessings["still"]
if ("thoughtful" in user_input_lower or "reflect" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "thoughtful"
conversation_context["last_response"] = None
return krishna_blessings["thoughtful"]
if "funny" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["funny"]
if ("laugh" in user_input_lower or "giggle" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["giggle_joke"]
if "silly" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["silly"]
if "butter joke" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["butter_joke"]
if "cow joke" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["cow_joke"]
if "flute joke" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["flute_joke"]
if "dance joke" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["dance_joke"]
if "mischief joke" in user_input_lower and not use_model:
conversation_context["last_topic"] = "joke"
conversation_context["last_response"] = None
return krishna_blessings["mischief_joke"]
if ("riddle" in user_input_lower or "puzzle" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "riddle"
conversation_context["last_response"] = None
return krishna_blessings["riddle"]
if ("mystery" in user_input_lower or "enigma" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "riddle"
conversation_context["last_response"] = None
return krishna_blessings["mystery"]
if "question" in user_input_lower and not use_model:
conversation_context["last_topic"] = "riddle"
conversation_context["last_response"] = None
return krishna_blessings["question"]
if "birthday" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return ayush_surprises["birthday"]
if "happy birthday" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["happy_birthday"]
if "birthday wish" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_wish"]
if "birthday blessing" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_blessing"]
if "birthday dance" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_dance"]
if "birthday song" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_song"]
if "birthday gift" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_gift"]
if "birthday smile" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_smile"]
if "birthday love" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_love"]
if "birthday magic" in user_input_lower and not use_model:
conversation_context["last_topic"] = "birthday"
conversation_context["last_response"] = None
return krishna_blessings["birthday_magic"]
if ("wisdom" in user_input_lower or "advice" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["wisdom"]
if ("lesson" in user_input_lower or "truth" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["lesson"]
if "kindness" in user_input_lower and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["kindness"]
if "patience" in user_input_lower and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["patience"]
if "courage" in user_input_lower and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["courage"]
if "joy" in user_input_lower and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["joy"]
if "friendship" in user_input_lower and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["friendship"]
if "love" in user_input_lower and not use_model:
conversation_context["last_topic"] = "wisdom"
conversation_context["last_response"] = None
return krishna_blessings["love"]
if ("nature" in user_input_lower or "vrindavan" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["nature"]
if ("yamuna" in user_input_lower or "river" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["yamuna"]
if "peacock" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["peacock"]
if "cow" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["cow"]
if "flower" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["flower"]
if "tree" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["tree"]
if "forest" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["forest"]
if "bird" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["bird"]
if "sunset" in user_input_lower and not use_model:
conversation_context["last_topic"] = "nature"
conversation_context["last_response"] = None
return krishna_blessings["sunset"]
if ("encourage" in user_input_lower or "cheer" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["encourage"]
if ("support" in user_input_lower or "uplift" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["support"]
if ("inspire" in user_input_lower or "motivate" in user_input_lower) and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["inspire"]
if "strength" in user_input_lower and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["strength"]
if "hope" in user_input_lower and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["hope"]
if "believe" in user_input_lower and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["believe"]
if "shine" in user_input_lower and not use_model:
conversation_context["last_topic"] = "encourage"
conversation_context["last_response"] = None
return krishna_blessings["shine"]
if "friend" in user_input_lower and not use_model:
conversation_context["last_topic"] = "friend"
conversation_context["last_response"] = None
return krishna_blessings["friend"]
if "smile" in user_input_lower and not use_model:
conversation_context["last_topic"] = "smile"
conversation_context["last_response"] = None
return krishna_blessings["smile"]
if "magic" in user_input_lower and not use_model:
conversation_context["last_topic"] = "magic"
conversation_context["last_response"] = None
return krishna_blessings["magic"]
if "adventure" in user_input_lower and not use_model:
conversation_context["last_topic"] = "adventure"
conversation_context["last_response"] = None
return krishna_blessings["adventure"]
if "song" in user_input_lower and not use_model:
conversation_context["last_topic"] = "song"
conversation_context["last_response"] = None
return krishna_blessings["song"]
if "dream" in user_input_lower and not use_model:
conversation_context["last_topic"] = "dream"
conversation_context["last_response"] = None
return krishna_blessings["dream"]
if "story" in user_input_lower and not use_model:
conversation_context["last_topic"] = "story"
conversation_context["last_response"] = None
return krishna_blessings["story"]
if "surprise" in user_input_lower and not use_model:
conversation_context["last_topic"] = "surprise"
conversation_context["last_response"] = None
return krishna_blessings["surprise"]
if "celebrate" in user_input_lower and not use_model:
conversation_context["last_topic"] = "celebrate"
conversation_context["last_response"] = None
return krishna_blessings["celebrate"]
if "blessing" in user_input_lower and not use_model:
conversation_context["last_topic"] = "blessing"
conversation_context["last_response"] = None
return krishna_blessings["blessing"]
if conversation_context["last_topic"] and not use_model:
last_topic = conversation_context["last_topic"]
if last_topic in krishna_blessings:
conversation_context["last_response"] = None
return krishna_blessings[last_topic] + " What else would you like to talk about, Manavi?"
# Sentiment-based responses (only as a fallback, and avoid repetition)
if sentiment == "negative" and "sad" not in user_input_lower and conversation_context["last_response"] != "Hare Manavi! I see a little cloud over your heart—let’s dance by the Yamuna to bring back your smile!" and not use_model:
response = "Hare Manavi! I see a little cloud over your heart—let’s dance by the Yamuna to bring back your smile!"
conversation_context["last_response"] = response
return response
if sentiment == "positive" and conversation_context["last_response"] != "Hare Manavi! Your joy lights up Vrindavan—shall we celebrate with a flute melody?" and not use_model:
response = "Hare Manavi! Your joy lights up Vrindavan—shall we celebrate with a flute melody?"
conversation_context["last_response"] = response
return response
# Fallback to multiple open-source AI models if no keywords match or if use_model is True
# Shuffle the models to try them in random order
models_to_try = AI_MODELS.copy()
random.shuffle(models_to_try)
headers = {
"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}",
"Content-Type": "application/json"
}
for model in models_to_try:
try:
# Special case for Grok by xAI (simulated directly)
if model["name"] == "Grok by xAI":
logger.info("Using Grok by xAI simulated response.")
response = (
f"Hare Manavi! I’m Little Krishna, speaking through Grok by xAI. "
f"Let me answer in my playful way: "
)
# Generate a Krishna-like response based on the input
if "color" in user_input_lower:
response += "I love the golden yellow of Vrindavan’s butter—it’s as sweet as your smile! What’s your favorite color?"
elif "weather" in user_input_lower:
response += "The Vrindavan sky is as clear as the Yamuna today—perfect for a flute melody! How’s your weather?"
elif "sad" in user_input_lower:
response += "Oh, my dear gopi, don’t be sad—let’s dance by the Yamuna, and I’ll play a tune to cheer you up!"
elif "what" in user_input_lower:
response += "What, you say? Let’s share a Vrindavan tale—shall we?"
else:
response += f"I’m twirling my flute just for you! Shall we share a Vrindavan adventure today?"
conversation_context["last_response"] = None
return response
# For other models, use the Hugging Face Inference API with retry logic
logger.info(f"Attempting to generate response with model: {model['name']}")
payload = {
"inputs": f"{SYSTEM_PROMPT} '{user_input}'",
"parameters": model["parameters"]
}
response = make_api_request(model["endpoint"], headers=headers, json=payload)
if response and response.status_code == 200:
result = response.json()
# Handle different response formats based on the model
if isinstance(result, list) and len(result) > 0 and "generated_text" in result[0]:
response_text = result[0]["generated_text"].strip()
elif isinstance(result, dict) and "generated_text" in result:
response_text = result["generated_text"].strip()
elif isinstance(result, str):
response_text = result.strip()
else:
logger.warning(f"Unexpected response format from {model['name']}: {result}")
continue
conversation_context["last_response"] = None
logger.info(f"Successfully generated response with {model['name']}: {response_text}")
return response_text
else:
logger.warning(f"Failed to generate response with {model['name']}: {response.text if response else 'No response'}")
continue
except Exception as e:
logger.error(f"Error processing model {model['name']}: {str(e)}")
continue
# If all models fail, return a default message
logger.error("All model attempts failed; returning default response.")
conversation_context["last_response"] = None
return "Hare Manavi! I seem to be lost in Vrindavan’s magic—let’s try a different tune!"
except Exception as e:
logger.error(f"Unhandled exception in get_krishna_response: {str(e)}")
return "Hare Manavi! Something went wrong—let’s try again with a new Vrindavan adventure!" |