Spaces:
Sleeping
Sleeping
File size: 3,951 Bytes
861644b dcf0d9b 861644b 8da7f3a becf758 861644b 931c9b2 861644b 13ef3dd 861644b 0ceb0cb 931c9b2 dcf0d9b bad8bf8 861644b 8aafa5b a6230e3 861644b 867e7a8 861644b 35e8040 861644b 35e8040 861644b 35e8040 66eef12 861644b 1c0d5d4 861644b ed792be 0d5ab99 ed792be bad8bf8 5122299 dcf0d9b ed792be dcf0d9b 2d0ffb3 0d5ab99 f831fba e66fe67 16ceabd f831fba e66fe67 2f31511 7021cf4 861644b f996380 861644b 62b612c 861644b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# importing libraries
import streamlit as st
import pandas as pd
import numpy as np
import pickle
np.random.seed(42)
st.markdown("<body style ='color:#E2E0D9;'></body>", unsafe_allow_html=True)
st.markdown("<h4 style='text-align: center; color: #1B9E91;'>House Price Prediction in Ames, Iowa</h4>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: center; color: #1B9E91;'>Optuna optimized LGBM model to estimate the range of house prices based on your selection. </h5>", unsafe_allow_html=True)
st.write("If you want to know the numbers that you picked for some of the features such as Overall Quality, Sale Conditions etc., please check the following link")
st.write("[link to the categorical encoding](https://github.com/aye-thuzar/CS634Project/edit/main/docs.md)")
#setting up the sliders and getting the input the sliders
name_list = [
'OverallQual',
'YearBuilt',
'TotalBsmtSF',
'GrLivArea',
'MasVnrArea',
'BsmtFinType1',
'Neighborhood',
'GarageType',
'SaleCondition',
'BsmtExposure']
description_list = [
'What is the Overall material and finish quality?',
'In which year was the Original construction date?',
'What is the Total square feet of basement area?',
'What is the Above grade (ground) living area in square feet?',
'What is the Masonry veneer area in square feet?',
'What is the Quality of the basement finished area?',
'Where are the physical locations within Ames city limits?',
'Where is the location of the Garage?',
'What is the condition of the sale?',
'What is the basement exposure: walkout or garden-level basement walls?'
]
min_list = [
1.0,
1950.0,
0.0,
0.0,
334.0,
1.0,
1.0,
1.0,
1.0,
0.0
]
max_list = [
10.0,
2010.0,
2336.0,
6110.0,
4692.0,
7.0,
25.0,
7.0,
6.0,
5.0,
]
count = 0
with st.sidebar:
for i in range(len(name_list)):
variable_name = name_list[i]
globals()[variable_name] = st.slider(description_list[i] ,min_value=int(min_list[i]), max_value =int(max_list[i]),step=1)
st.write("[Kaggle Link to Data Set](https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques)")
data_df = {
'OverallQual': [OverallQual],
'YearBuilt': [YearBuilt],
'TotalBsmtSF': [TotalBsmtSF],
'GrLivArea':[GrLivArea],
'MasVnrArea': [MasVnrArea],
'BsmtFinType1': [BsmtFinType1],
'Neighborhood': [Neighborhood],
'GarageType': [GarageType],
'SaleCondition': [SaleCondition],
'BsmtExposure': [BsmtExposure]
}
data_df = pd.DataFrame.from_dict(data_df)
st.write("Please adjust the feature values using the slides on the left: ")
st.write(data_df.head())
#normalizing the data
diff = np.array(max_list)-np.array(min_list)
data_df = (data_df.values - np.array(min_list)) / diff
st.write("Normalized input data")
st.write(data_df)
# load trained model
lgbm_base = pickle.load(open('lgbm_base.pkl', 'rb'))
lgbm_opt = pickle.load(open('lgbm_opt_test.pkl', 'rb'))
xgb = pickle.load(open('xgb_model.pkl', 'rb'))
y_pred_xgb = xgb.predict(data_df)
y_pred_optimized = lgbm_opt.predict(data_df)
col1, col2, col3 , col4, col5 = st.columns(5)
with col1:
pass
with col2:
pass
with col4:
pass
with col5:
pass
with col3 :
center_button = st.button('Calculate range of house price')
if center_button:
import time
#my_bar = st.progress(0)
with st.spinner('Calculating....'):
time.sleep(2)
st.markdown("<h5 style='text-align: center; color: #1B9E91;'>The price range of your house is between:</h5>", unsafe_allow_html=True)
col1, col2 = st.columns([3, 3])
lower_number = "{:,.2f}".format(y_pred_xgb[0])
higher_number = "{:,.2f}".format(y_pred_xgb[0])
col1, col2, col3 = st.columns(3)
with col1:
st.write("")
with col2:
st.subheader("USD "+ str(lower_number))
st.subheader(" AND ")
st.subheader(" USD "+str(higher_number))
with col3:
st.write("")
|