Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
|
2 |
-
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
import pickle
|
7 |
|
8 |
-
from sklearn.preprocessing import MinMaxScaler
|
9 |
-
|
10 |
-
scaler = MinMaxScaler()
|
11 |
-
|
12 |
np.random.seed(42)
|
13 |
|
14 |
st.markdown("<body style ='color:#E2E0D9;'></body>", unsafe_allow_html=True)
|
@@ -20,6 +16,10 @@ st.markdown("<h5 style='text-align: center; color: #1B9E91;'>Optuna optimized LG
|
|
20 |
st.write("If you want to know the numbers that you picked for some of the features such as Overall Quality, Sale Conditions etc., please check the following link")
|
21 |
st.write("[link to the categorical encoding](https://github.com/aye-thuzar/CS634Project/edit/main/docs.md)")
|
22 |
|
|
|
|
|
|
|
|
|
23 |
name_list = [
|
24 |
'OverallQual',
|
25 |
'YearBuilt',
|
@@ -104,9 +104,13 @@ data_df = pd.DataFrame.from_dict(data_df)
|
|
104 |
st.write("Please adjust the feature values using the slides on the left: ")
|
105 |
st.write(data_df.head())
|
106 |
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
109 |
|
|
|
110 |
st.write(data_df)
|
111 |
|
112 |
# load trained model
|
|
|
1 |
|
2 |
+
# importing libraries
|
3 |
import streamlit as st
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
import pickle
|
7 |
|
|
|
|
|
|
|
|
|
8 |
np.random.seed(42)
|
9 |
|
10 |
st.markdown("<body style ='color:#E2E0D9;'></body>", unsafe_allow_html=True)
|
|
|
16 |
st.write("If you want to know the numbers that you picked for some of the features such as Overall Quality, Sale Conditions etc., please check the following link")
|
17 |
st.write("[link to the categorical encoding](https://github.com/aye-thuzar/CS634Project/edit/main/docs.md)")
|
18 |
|
19 |
+
|
20 |
+
'''
|
21 |
+
setting up the sliders and getting the input the sliders
|
22 |
+
'''
|
23 |
name_list = [
|
24 |
'OverallQual',
|
25 |
'YearBuilt',
|
|
|
104 |
st.write("Please adjust the feature values using the slides on the left: ")
|
105 |
st.write(data_df.head())
|
106 |
|
107 |
+
'''
|
108 |
+
normalizing the data
|
109 |
+
'''
|
110 |
+
diff = np.array(min_list)-np.array(max_list)
|
111 |
+
data_df = (data_df.values - np.array(min_list)) / diff
|
112 |
|
113 |
+
st.write("Normalized input data")
|
114 |
st.write(data_df)
|
115 |
|
116 |
# load trained model
|