awacke1 commited on
Commit
e166c31
·
verified ·
1 Parent(s): 713257a

Create backup2.tryvideoagain.app.py

Browse files
Files changed (1) hide show
  1. backup2.tryvideoagain.app.py +113 -0
backup2.tryvideoagain.app.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ import os
4
+ import uuid
5
+ import random
6
+ from glob import glob
7
+ from pathlib import Path
8
+ from typing import Optional
9
+ from diffusers import StableVideoDiffusionPipeline
10
+ from diffusers.utils import load_image, export_to_video
11
+ from PIL import Image
12
+ from huggingface_hub import hf_hub_download
13
+
14
+
15
+ pipe = StableVideoDiffusionPipeline.from_pretrained(
16
+ "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
17
+ )
18
+ pipe.to("cuda")
19
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
20
+ max_64_bit_int = 2**63 - 1
21
+
22
+ # Function to sample video from the input image
23
+ def sample(
24
+ image: Image,
25
+ seed: Optional[int] = 42,
26
+ randomize_seed: bool = True,
27
+ motion_bucket_id: int = 127,
28
+ fps_id: int = 6,
29
+ version: str = "svd_xt",
30
+ cond_aug: float = 0.02,
31
+ decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
32
+ device: str = "cuda",
33
+ output_folder: str = "outputs",
34
+ ):
35
+ if image.mode == "RGBA":
36
+ image = image.convert("RGB")
37
+ if randomize_seed:
38
+ seed = random.randint(0, max_64_bit_int)
39
+
40
+ generator = torch.manual_seed(seed)
41
+
42
+ os.makedirs(output_folder, exist_ok=True)
43
+ base_count = len(glob(os.path.join(output_folder, "*.mp4")))
44
+ video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
45
+ frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
46
+ export_to_video(frames, video_path, fps=fps_id)
47
+ torch.manual_seed(seed)
48
+ return video_path, seed
49
+
50
+ # Function to resize the uploaded image
51
+ def resize_image(image, output_size=(1024, 576)):
52
+ target_aspect = output_size[0] / output_size[1]
53
+ image_aspect = image.width / image.height
54
+
55
+ if image_aspect > target_aspect:
56
+ new_height = output_size[1]
57
+ new_width = int(new_height * image_aspect)
58
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
59
+ left = (new_width - output_size[0]) / 2
60
+ top = 0
61
+ right = (new_width + output_size[0]) / 2
62
+ bottom = output_size[1]
63
+ else:
64
+ new_width = output_size[0]
65
+ new_height = int(new_width / image_aspect)
66
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
67
+ left = 0
68
+ top = (new_height - output_size[1]) / 2
69
+ right = output_size[0]
70
+ bottom = (new_height + output_size[1]) / 2
71
+
72
+ cropped_image = resized_image.crop((left, top, right, bottom))
73
+ return cropped_image
74
+
75
+ # Dynamically load image files from the 'images' directory
76
+ def get_example_images():
77
+ image_dir = "images/"
78
+ image_files = glob(os.path.join(image_dir, "*.png")) + glob(os.path.join(image_dir, "*.jpg"))
79
+ return image_files
80
+
81
+ # Gradio interface setup
82
+ with gr.Blocks() as demo:
83
+ gr.Markdown('''# Stable Video Diffusion using Image 2 Video XT
84
+ #### Research release: generate `4s` vid from a single image at (`25 frames` at `6 fps`).''')
85
+
86
+ with gr.Row():
87
+ with gr.Column():
88
+ image = gr.Image(label="Upload your image", type="pil")
89
+ generate_btn = gr.Button("Generate")
90
+ video = gr.Video()
91
+
92
+ with gr.Accordion("Advanced options", open=False):
93
+ seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
94
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
95
+ motion_bucket_id = gr.Slider(label="Motion bucket id", value=127, minimum=1, maximum=255)
96
+ fps_id = gr.Slider(label="Frames per second", value=6, minimum=5, maximum=30)
97
+
98
+ image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
99
+ generate_btn.click(fn=sample, inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
100
+
101
+ # Dynamically load examples from the filesystem
102
+ example_images = get_example_images()
103
+ gr.Examples(
104
+ examples=example_images,
105
+ inputs=image,
106
+ outputs=[video, seed],
107
+ fn=sample,
108
+ cache_examples=True,
109
+ )
110
+
111
+ if __name__ == "__main__":
112
+ demo.queue(max_size=20)
113
+ demo.launch(share=True)