Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
import os
|
4 |
import uuid
|
5 |
import random
|
6 |
-
|
7 |
from glob import glob
|
8 |
from pathlib import Path
|
9 |
from typing import Optional
|
@@ -12,6 +11,7 @@ from diffusers.utils import load_image, export_to_video
|
|
12 |
from PIL import Image
|
13 |
from huggingface_hub import hf_hub_download
|
14 |
|
|
|
15 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
16 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
17 |
)
|
@@ -19,6 +19,7 @@ pipe.to("cuda")
|
|
19 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
20 |
max_64_bit_int = 2**63 - 1
|
21 |
|
|
|
22 |
def sample(
|
23 |
image: Image,
|
24 |
seed: Optional[int] = 42,
|
@@ -31,60 +32,48 @@ def sample(
|
|
31 |
device: str = "cuda",
|
32 |
output_folder: str = "outputs",
|
33 |
):
|
|
|
34 |
if image.mode == "RGBA":
|
35 |
image = image.convert("RGB")
|
36 |
if(randomize_seed):
|
37 |
seed = random.randint(0, max_64_bit_int)
|
|
|
38 |
generator = torch.manual_seed(seed)
|
39 |
|
40 |
-
# Count completed mp4 videos and set the path
|
41 |
os.makedirs(output_folder, exist_ok=True)
|
42 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
43 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
44 |
-
|
45 |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
46 |
-
|
47 |
-
# Export frames to video
|
48 |
export_to_video(frames, video_path, fps=fps_id)
|
49 |
torch.manual_seed(seed)
|
50 |
-
|
51 |
-
# Return the video and seed
|
52 |
return video_path, seed
|
53 |
|
54 |
def resize_image(image, output_size=(1024, 576)):
|
55 |
-
# Calculate aspect ratios
|
56 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
57 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
58 |
|
59 |
-
# Resize then crop if the original image is larger
|
60 |
if image_aspect > target_aspect:
|
61 |
-
# Resize the image to match the target height, maintaining aspect ratio
|
62 |
new_height = output_size[1]
|
63 |
new_width = int(new_height * image_aspect)
|
64 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
65 |
-
|
66 |
-
# Calculate coordinates for cropping
|
67 |
left = (new_width - output_size[0]) / 2
|
68 |
top = 0
|
69 |
right = (new_width + output_size[0]) / 2
|
70 |
bottom = output_size[1]
|
71 |
else:
|
72 |
-
# Resize the image to match the target width, maintaining aspect ratio
|
73 |
new_width = output_size[0]
|
74 |
new_height = int(new_width / image_aspect)
|
75 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
76 |
-
|
77 |
-
# Calculate coordinates for cropping
|
78 |
left = 0
|
79 |
top = (new_height - output_size[1]) / 2
|
80 |
right = output_size[0]
|
81 |
bottom = (new_height + output_size[1]) / 2
|
82 |
|
83 |
-
# Crop the image
|
84 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
85 |
return cropped_image
|
86 |
|
87 |
with gr.Blocks() as demo:
|
|
|
88 |
gr.Markdown('''# Stable Video Diffusion using Image 2 Video XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt),
|
89 |
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets),
|
90 |
[stability's ui waitlist](https://stability.ai/contact))
|
@@ -92,12 +81,15 @@ with gr.Blocks() as demo:
|
|
92 |
''')
|
93 |
|
94 |
with gr.Row():
|
|
|
95 |
with gr.Column():
|
96 |
image = gr.Image(label="Upload your image", type="pil")
|
97 |
generate_btn = gr.Button("Generate")
|
|
|
98 |
video = gr.Video()
|
99 |
|
100 |
with gr.Accordion("Advanced options", open=False):
|
|
|
101 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
102 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
103 |
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|
|
|
3 |
import os
|
4 |
import uuid
|
5 |
import random
|
|
|
6 |
from glob import glob
|
7 |
from pathlib import Path
|
8 |
from typing import Optional
|
|
|
11 |
from PIL import Image
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
|
14 |
+
|
15 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
16 |
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
17 |
)
|
|
|
19 |
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
20 |
max_64_bit_int = 2**63 - 1
|
21 |
|
22 |
+
|
23 |
def sample(
|
24 |
image: Image,
|
25 |
seed: Optional[int] = 42,
|
|
|
32 |
device: str = "cuda",
|
33 |
output_folder: str = "outputs",
|
34 |
):
|
35 |
+
|
36 |
if image.mode == "RGBA":
|
37 |
image = image.convert("RGB")
|
38 |
if(randomize_seed):
|
39 |
seed = random.randint(0, max_64_bit_int)
|
40 |
+
|
41 |
generator = torch.manual_seed(seed)
|
42 |
|
|
|
43 |
os.makedirs(output_folder, exist_ok=True)
|
44 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
45 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
|
|
46 |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
|
|
|
|
|
47 |
export_to_video(frames, video_path, fps=fps_id)
|
48 |
torch.manual_seed(seed)
|
|
|
|
|
49 |
return video_path, seed
|
50 |
|
51 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
52 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
53 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
54 |
|
|
|
55 |
if image_aspect > target_aspect:
|
|
|
56 |
new_height = output_size[1]
|
57 |
new_width = int(new_height * image_aspect)
|
58 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
|
59 |
left = (new_width - output_size[0]) / 2
|
60 |
top = 0
|
61 |
right = (new_width + output_size[0]) / 2
|
62 |
bottom = output_size[1]
|
63 |
else:
|
|
|
64 |
new_width = output_size[0]
|
65 |
new_height = int(new_width / image_aspect)
|
66 |
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
|
|
|
|
67 |
left = 0
|
68 |
top = (new_height - output_size[1]) / 2
|
69 |
right = output_size[0]
|
70 |
bottom = (new_height + output_size[1]) / 2
|
71 |
|
|
|
72 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
73 |
return cropped_image
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
+
|
77 |
gr.Markdown('''# Stable Video Diffusion using Image 2 Video XT ([model](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt),
|
78 |
[paper](https://stability.ai/research/stable-video-diffusion-scaling-latent-video-diffusion-models-to-large-datasets),
|
79 |
[stability's ui waitlist](https://stability.ai/contact))
|
|
|
81 |
''')
|
82 |
|
83 |
with gr.Row():
|
84 |
+
|
85 |
with gr.Column():
|
86 |
image = gr.Image(label="Upload your image", type="pil")
|
87 |
generate_btn = gr.Button("Generate")
|
88 |
+
|
89 |
video = gr.Video()
|
90 |
|
91 |
with gr.Accordion("Advanced options", open=False):
|
92 |
+
|
93 |
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1)
|
94 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
95 |
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
|