|
import gradio as gr |
|
import torch |
|
import os |
|
import random |
|
import time |
|
import math |
|
import spaces |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import Optional, List, Union |
|
|
|
from diffusers import StableVideoDiffusionPipeline |
|
from diffusers.utils import export_to_video, export_to_gif |
|
from PIL import Image |
|
|
|
fps25Pipe = StableVideoDiffusionPipeline.from_pretrained( |
|
"vdo/stable-video-diffusion-img2vid-xt-1-1", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
fps25Pipe.to("cuda") |
|
|
|
fps14Pipe = StableVideoDiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-video-diffusion-img2vid", torch_dtype=torch.float16, variant="fp16" |
|
) |
|
fps14Pipe.to("cuda") |
|
|
|
dragnuwaPipe = StableVideoDiffusionPipeline.from_pretrained( |
|
"a-r-r-o-w/dragnuwa-svd", torch_dtype=torch.float16, variant="fp16", low_cpu_mem_usage=False, device_map=None |
|
) |
|
dragnuwaPipe.to("cuda") |
|
|
|
max_64_bit_int = 2**63 - 1 |
|
|
|
def animate( |
|
image: Image, |
|
seed: Optional[int] = 42, |
|
randomize_seed: bool = True, |
|
motion_bucket_id: int = 127, |
|
fps_id: int = 25, |
|
noise_aug_strength: float = 0.1, |
|
decoding_t: int = 3, |
|
video_format: str = "mp4", |
|
frame_format: str = "webp", |
|
version: str = "auto", |
|
width: int = 1024, |
|
height: int = 576, |
|
motion_control: bool = False, |
|
num_inference_steps: int = 25 |
|
): |
|
start = time.time() |
|
|
|
if image is None: |
|
raise gr.Error("Please provide an image to animate.") |
|
|
|
output_folder = "outputs" |
|
image_data = resize_image(image, output_size=(width, height)) |
|
if image_data.mode == "RGBA": |
|
image_data = image_data.convert("RGB") |
|
|
|
if motion_control: |
|
image_data = [image_data] * 2 |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, max_64_bit_int) |
|
|
|
if version == "auto": |
|
if 14 < fps_id: |
|
version = "svdxt" |
|
else: |
|
version = "svd" |
|
|
|
frames = animate_on_gpu( |
|
image_data, |
|
seed, |
|
motion_bucket_id, |
|
fps_id, |
|
noise_aug_strength, |
|
decoding_t, |
|
version, |
|
width, |
|
height, |
|
num_inference_steps |
|
) |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*." + video_format))) |
|
result_path = os.path.join(output_folder, f"{base_count:06d}." + video_format) |
|
|
|
if video_format == "gif": |
|
video_path = None |
|
gif_path = result_path |
|
export_to_gif(image=frames, output_gif_path=gif_path, fps=fps_id) |
|
else: |
|
video_path = result_path |
|
gif_path = None |
|
export_to_video(frames, video_path, fps=fps_id) |
|
|
|
end = time.time() |
|
secondes = int(end - start) |
|
minutes = math.floor(secondes / 60) |
|
secondes = secondes - (minutes * 60) |
|
hours = math.floor(minutes / 60) |
|
minutes = minutes - (hours * 60) |
|
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \ |
|
"Wait 2 min before a new run to avoid quota penalty or use another computer. " + \ |
|
"The video has been generated in " + \ |
|
((str(hours) + " h, ") if hours != 0 else "") + \ |
|
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \ |
|
str(secondes) + " sec." |
|
|
|
return [ |
|
|
|
gr.update(value = video_path, visible = video_format != "gif"), |
|
|
|
gr.update(value = gif_path, visible = video_format == "gif"), |
|
|
|
gr.update(label = "๐พ Download animation in *." + video_format + " format", value=result_path, visible=True), |
|
|
|
gr.update(label = "Generated frames in *." + frame_format + " format", format = frame_format, value = frames, visible = True), |
|
|
|
seed, |
|
|
|
gr.update(value = information, visible = True), |
|
|
|
gr.update(visible = True) |
|
] |
|
|
|
@torch.no_grad() |
|
@spaces.GPU(duration=180) |
|
def animate_on_gpu( |
|
image_data: Union[Image.Image, List[Image.Image]], |
|
seed: Optional[int] = 42, |
|
motion_bucket_id: int = 127, |
|
fps_id: int = 6, |
|
noise_aug_strength: float = 0.1, |
|
decoding_t: int = 3, |
|
version: str = "svdxt", |
|
width: int = 1024, |
|
height: int = 576, |
|
num_inference_steps: int = 25 |
|
): |
|
generator = torch.manual_seed(seed) |
|
|
|
if version == "dragnuwa": |
|
return dragnuwaPipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0] |
|
elif version == "svdxt": |
|
return fps25Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0] |
|
else: |
|
return fps14Pipe(image_data, width=width, height=height, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength, num_frames=25, num_inference_steps=num_inference_steps).frames[0] |
|
|
|
|
|
def resize_image(image, output_size=(1024, 576)): |
|
|
|
if image.width == output_size[0] and image.height == output_size[1]: |
|
return image |
|
|
|
|
|
target_aspect = output_size[0] / output_size[1] |
|
image_aspect = image.width / image.height |
|
|
|
|
|
if image_aspect > target_aspect: |
|
|
|
new_height = output_size[1] |
|
new_width = int(new_height * image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
left = (new_width - output_size[0]) / 2 |
|
top = 0 |
|
right = (new_width + output_size[0]) / 2 |
|
bottom = output_size[1] |
|
else: |
|
|
|
new_width = output_size[0] |
|
new_height = int(new_width / image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.LANCZOS) |
|
|
|
left = 0 |
|
top = (new_height - output_size[1]) / 2 |
|
right = output_size[0] |
|
bottom = (new_height + output_size[1]) / 2 |
|
|
|
|
|
return resized_image.crop((left, top, right, bottom)) |
|
|
|
def reset(): |
|
return [ |
|
None, |
|
random.randint(0, max_64_bit_int), |
|
True, |
|
127, |
|
6, |
|
0.1, |
|
3, |
|
"mp4", |
|
"webp", |
|
"auto", |
|
1024, |
|
576, |
|
False, |
|
25 |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML(""" |
|
<h1><center>Image-to-Video</center></h1> |
|
<big><center>Animate your image into 25 frames of 1024x576 pixels freely, without account, without watermark and download the video</center></big> |
|
<br/> |
|
|
|
<p> |
|
This demo is based on <i>Stable Video Diffusion</i> artificial intelligence. |
|
No prompt or camera control is handled here. |
|
To control motions, rather use <i><a href="https://huggingface.co/spaces/TencentARC/MotionCtrl_SVD">MotionCtrl SVD</a></i>. |
|
If you need 128 frames, rather use <i><a href="https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1">ExVideo</a></i>. |
|
</p> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Upload your image", type="pil") |
|
with gr.Accordion("Advanced options", open=False): |
|
width = gr.Slider(label="Width", info="Width of the video", value=1024, minimum=256, maximum=1024, step=8) |
|
height = gr.Slider(label="Height", info="Height of the video", value=576, minimum=256, maximum=576, step=8) |
|
motion_control = gr.Checkbox(label="Motion control (experimental)", info="Fix the camera", value=False) |
|
video_format = gr.Radio([["*.mp4", "mp4"], ["*.avi", "avi"], ["*.wmv", "wmv"], ["*.mkv", "mkv"], ["*.mov", "mov"], ["*.gif", "gif"]], label="Video format for result", info="File extention", value="mp4", interactive=True) |
|
frame_format = gr.Radio([["*.webp", "webp"], ["*.png", "png"], ["*.jpeg", "jpeg"], ["*.gif (unanimated)", "gif"], ["*.bmp", "bmp"]], label="Image format for frames", info="File extention", value="webp", interactive=True) |
|
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=25, minimum=5, maximum=30) |
|
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255) |
|
noise_aug_strength = gr.Slider(label="Noise strength", info="The noise to add", value=0.1, minimum=0, maximum=1, step=0.1) |
|
num_inference_steps = gr.Slider(label="Number inference steps", info="More denoising steps usually lead to a higher quality video at the expense of slower inference", value=25, minimum=1, maximum=100, step=1) |
|
decoding_t = gr.Slider(label="Decoding", info="Number of frames decoded at a time; this eats more VRAM; reduce if necessary", value=3, minimum=1, maximum=5, step=1) |
|
version = gr.Radio([["Auto", "auto"], ["๐๐ปโโ๏ธ SVD (trained on 14 f/s)", "svd"], ["๐๐ปโโ๏ธ๐จ SVD-XT (trained on 25 f/s)", "svdxt"]], label="Model", info="Trained model", value="auto", interactive=True) |
|
seed = gr.Slider(label="Seed", value=42, randomize=True, minimum=0, maximum=max_64_bit_int, step=1) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
generate_btn = gr.Button(value="๐ Animate", variant="primary") |
|
reset_btn = gr.Button(value="๐งน Reinit page", variant="stop", elem_id="reset_button", visible = False) |
|
|
|
with gr.Column(): |
|
video_output = gr.Video(label="Generated video", format="mp4", autoplay=True, show_download_button=False) |
|
gif_output = gr.Image(label="Generated video", format="gif", show_download_button=False, visible=False) |
|
download_button = gr.DownloadButton(label="๐พ Download video", visible=False) |
|
information_msg = gr.HTML(visible=False) |
|
gallery = gr.Gallery(label="Generated frames", visible=False) |
|
|
|
generate_btn.click(fn=animate, inputs=[ |
|
image, |
|
seed, |
|
randomize_seed, |
|
motion_bucket_id, |
|
fps_id, |
|
noise_aug_strength, |
|
decoding_t, |
|
video_format, |
|
frame_format, |
|
version, |
|
width, |
|
height, |
|
motion_control, |
|
num_inference_steps |
|
], outputs=[ |
|
video_output, |
|
gif_output, |
|
download_button, |
|
gallery, |
|
seed, |
|
information_msg, |
|
reset_btn |
|
], api_name="video") |
|
|
|
reset_btn.click(fn = reset, inputs = [], outputs = [ |
|
image, |
|
seed, |
|
randomize_seed, |
|
motion_bucket_id, |
|
fps_id, |
|
noise_aug_strength, |
|
decoding_t, |
|
video_format, |
|
frame_format, |
|
version, |
|
width, |
|
height, |
|
motion_control, |
|
num_inference_steps |
|
], queue = False, show_progress = False) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["images/01.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25], |
|
["images/02.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25], |
|
["images/03.png", 42, True, 127, 25, 0.1, 3, "mp4", "png", "auto", 1024, 576, False, 25] |
|
], |
|
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id, noise_aug_strength, decoding_t, video_format, frame_format, version, width, height, motion_control, num_inference_steps], |
|
outputs=[video_output, gif_output, download_button, gallery, seed, information_msg, reset_btn], |
|
fn=animate, |
|
run_on_click=True, |
|
cache_examples=False, |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True, show_api=False) |