|
import math |
|
import os |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from einops import rearrange, repeat |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from torchvision.transforms import ToTensor |
|
|
|
from scripts.util.detection.nsfw_and_watermark_dectection import \ |
|
DeepFloydDataFiltering |
|
from sgm.inference.helpers import embed_watermark |
|
from sgm.util import default, instantiate_from_config |
|
from huggingface_hub import hf_hub_download |
|
|
|
num_frames = 25 |
|
num_steps = 30 |
|
model_config = "scripts/sampling/configs/svd_xt.yaml" |
|
device = "cuda" |
|
|
|
hf_hub_download(repo_id="stabilityai/stable-video-diffusion-img2vid-xt", filename="svd_xt.safetensors", local_dir="checkpoints", token=os.getenv("HF_TOKEN")) |
|
|
|
css = ''' |
|
.gradio-container{max-width:900px} |
|
''' |
|
|
|
def load_model( |
|
config: str, |
|
device: str, |
|
num_frames: int, |
|
num_steps: int, |
|
): |
|
config = OmegaConf.load(config) |
|
if device == "cuda": |
|
config.model.params.conditioner_config.params.emb_models[ |
|
0 |
|
].params.open_clip_embedding_config.params.init_device = device |
|
|
|
config.model.params.sampler_config.params.num_steps = num_steps |
|
config.model.params.sampler_config.params.guider_config.params.num_frames = ( |
|
num_frames |
|
) |
|
if device == "cuda": |
|
with torch.device(device): |
|
model = instantiate_from_config(config.model).to(device).eval() |
|
else: |
|
model = instantiate_from_config(config.model).to(device).eval() |
|
|
|
filter = DeepFloydDataFiltering(verbose=False, device=device) |
|
return model, filter |
|
|
|
model, filter = load_model( |
|
model_config, |
|
device, |
|
num_frames, |
|
num_steps, |
|
) |
|
|
|
def sample( |
|
input_path: str, |
|
num_frames: Optional[int] = 25, |
|
num_steps: Optional[int] = 30, |
|
version: str = "svd_xt", |
|
fps_id: int = 6, |
|
motion_bucket_id: int = 127, |
|
cond_aug: float = 0.02, |
|
seed: int = 23, |
|
decoding_t: int = 7, |
|
): |
|
output_folder = str(uuid.uuid4()) |
|
torch.manual_seed(seed) |
|
path = Path(input_path) |
|
all_img_paths = [] |
|
if path.is_file(): |
|
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): |
|
all_img_paths = [input_path] |
|
else: |
|
raise ValueError("Path is not valid image file.") |
|
elif path.is_dir(): |
|
all_img_paths = sorted( |
|
[ |
|
f |
|
for f in path.iterdir() |
|
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] |
|
] |
|
) |
|
if len(all_img_paths) == 0: |
|
raise ValueError("Folder does not contain any images.") |
|
else: |
|
raise ValueError |
|
|
|
for input_img_path in all_img_paths: |
|
with Image.open(input_img_path) as image: |
|
if image.mode == "RGBA": |
|
image = image.convert("RGB") |
|
w, h = image.size |
|
|
|
if h % 64 != 0 or w % 64 != 0: |
|
width, height = map(lambda x: x - x % 64, (w, h)) |
|
image = image.resize((width, height)) |
|
print( |
|
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" |
|
) |
|
|
|
image = ToTensor()(image) |
|
image = image * 2.0 - 1.0 |
|
|
|
image = image.unsqueeze(0).to(device) |
|
H, W = image.shape[2:] |
|
assert image.shape[1] == 3 |
|
F = 8 |
|
C = 4 |
|
shape = (num_frames, C, H // F, W // F) |
|
if (H, W) != (576, 1024): |
|
print( |
|
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." |
|
) |
|
if motion_bucket_id > 255: |
|
print( |
|
"WARNING: High motion bucket! This may lead to suboptimal performance." |
|
) |
|
|
|
if fps_id < 5: |
|
print("WARNING: Small fps value! This may lead to suboptimal performance.") |
|
|
|
if fps_id > 30: |
|
print("WARNING: Large fps value! This may lead to suboptimal performance.") |
|
|
|
value_dict = {} |
|
value_dict["motion_bucket_id"] = motion_bucket_id |
|
value_dict["fps_id"] = fps_id |
|
value_dict["cond_aug"] = cond_aug |
|
value_dict["cond_frames_without_noise"] = image |
|
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) |
|
value_dict["cond_aug"] = cond_aug |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
with torch.autocast(device): |
|
batch, batch_uc = get_batch( |
|
get_unique_embedder_keys_from_conditioner(model.conditioner), |
|
value_dict, |
|
[1, num_frames], |
|
T=num_frames, |
|
device=device, |
|
) |
|
c, uc = model.conditioner.get_unconditional_conditioning( |
|
batch, |
|
batch_uc=batch_uc, |
|
force_uc_zero_embeddings=[ |
|
"cond_frames", |
|
"cond_frames_without_noise", |
|
], |
|
) |
|
|
|
for k in ["crossattn", "concat"]: |
|
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) |
|
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) |
|
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) |
|
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) |
|
|
|
randn = torch.randn(shape, device=device) |
|
|
|
additional_model_inputs = {} |
|
additional_model_inputs["image_only_indicator"] = torch.zeros( |
|
2, num_frames |
|
).to(device) |
|
additional_model_inputs["num_video_frames"] = batch["num_video_frames"] |
|
|
|
def denoiser(input, sigma, c): |
|
return model.denoiser( |
|
model.model, input, sigma, c, **additional_model_inputs |
|
) |
|
|
|
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) |
|
model.en_and_decode_n_samples_a_time = decoding_t |
|
samples_x = model.decode_first_stage(samples_z) |
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
writer = cv2.VideoWriter( |
|
video_path, |
|
cv2.VideoWriter_fourcc(*"MP4V"), |
|
fps_id + 1, |
|
(samples.shape[-1], samples.shape[-2]), |
|
) |
|
|
|
samples = embed_watermark(samples) |
|
samples = filter(samples) |
|
vid = ( |
|
(rearrange(samples, "t c h w -> t h w c") * 255) |
|
.cpu() |
|
.numpy() |
|
.astype(np.uint8) |
|
) |
|
for frame in vid: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |
|
writer.write(frame) |
|
writer.release() |
|
return video_path |
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner): |
|
return list(set([x.input_key for x in conditioner.embedders])) |
|
|
|
|
|
def get_batch(keys, value_dict, N, T, device): |
|
batch = {} |
|
batch_uc = {} |
|
|
|
for key in keys: |
|
if key == "fps_id": |
|
batch[key] = ( |
|
torch.tensor([value_dict["fps_id"]]) |
|
.to(device) |
|
.repeat(int(math.prod(N))) |
|
) |
|
elif key == "motion_bucket_id": |
|
batch[key] = ( |
|
torch.tensor([value_dict["motion_bucket_id"]]) |
|
.to(device) |
|
.repeat(int(math.prod(N))) |
|
) |
|
elif key == "cond_aug": |
|
batch[key] = repeat( |
|
torch.tensor([value_dict["cond_aug"]]).to(device), |
|
"1 -> b", |
|
b=math.prod(N), |
|
) |
|
elif key == "cond_frames": |
|
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0]) |
|
elif key == "cond_frames_without_noise": |
|
batch[key] = repeat( |
|
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0] |
|
) |
|
else: |
|
batch[key] = value_dict[key] |
|
|
|
if T is not None: |
|
batch["num_video_frames"] = T |
|
|
|
for key in batch.keys(): |
|
if key not in batch_uc and isinstance(batch[key], torch.Tensor): |
|
batch_uc[key] = torch.clone(batch[key]) |
|
return batch, batch_uc |
|
|
|
|
|
import gradio as gr |
|
import uuid |
|
def resize_image(image_path, output_size=(1024, 576)): |
|
with Image.open(image_path) as image: |
|
|
|
target_aspect = output_size[0] / output_size[1] |
|
image_aspect = image.width / image.height |
|
|
|
|
|
if image_aspect > target_aspect: |
|
|
|
new_height = output_size[1] |
|
new_width = int(new_height * image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) |
|
|
|
left = (new_width - output_size[0]) / 2 |
|
top = 0 |
|
right = (new_width + output_size[0]) / 2 |
|
bottom = output_size[1] |
|
else: |
|
|
|
new_width = output_size[0] |
|
new_height = int(new_width / image_aspect) |
|
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) |
|
|
|
left = 0 |
|
top = (new_height - output_size[1]) / 2 |
|
right = output_size[0] |
|
bottom = (new_height + output_size[1]) / 2 |
|
|
|
|
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
|
|
return cropped_image |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown('''# Stable Video Diffusion - Image2Video - XT |
|
Generate 25 frames of video from a single image with SDV-XT. [Join the waitlist](https://stability.ai/contact) for the text-to-video web experience |
|
''') |
|
with gr.Column(): |
|
image = gr.Image(label="Upload your image (it will be center cropped to 1024x576)", type="filepath") |
|
generate_btn = gr.Button("Generate") |
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
video = gr.Video() |
|
image.upload(fn=resize_image, inputs=image, outputs=image) |
|
generate_btn.click(fn=sample, inputs=[image], outputs=video, api_name="video") |
|
|
|
demo.launch() |
|
|