|
from abc import ABC, abstractmethod |
|
from typing import Tuple |
|
|
|
import torch |
|
|
|
|
|
class DenoiserScaling(ABC): |
|
@abstractmethod |
|
def __call__( |
|
self, sigma: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
pass |
|
|
|
|
|
class EDMScaling: |
|
def __init__(self, sigma_data: float = 0.5): |
|
self.sigma_data = sigma_data |
|
|
|
def __call__( |
|
self, sigma: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
c_skip = self.sigma_data**2 / (sigma**2 + self.sigma_data**2) |
|
c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2) ** 0.5 |
|
c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5 |
|
c_noise = 0.25 * sigma.log() |
|
return c_skip, c_out, c_in, c_noise |
|
|
|
|
|
class EpsScaling: |
|
def __call__( |
|
self, sigma: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
c_skip = torch.ones_like(sigma, device=sigma.device) |
|
c_out = -sigma |
|
c_in = 1 / (sigma**2 + 1.0) ** 0.5 |
|
c_noise = sigma.clone() |
|
return c_skip, c_out, c_in, c_noise |
|
|
|
|
|
class VScaling: |
|
def __call__( |
|
self, sigma: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
c_skip = 1.0 / (sigma**2 + 1.0) |
|
c_out = -sigma / (sigma**2 + 1.0) ** 0.5 |
|
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5 |
|
c_noise = sigma.clone() |
|
return c_skip, c_out, c_in, c_noise |
|
|
|
|
|
class VScalingWithEDMcNoise(DenoiserScaling): |
|
def __call__( |
|
self, sigma: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
c_skip = 1.0 / (sigma**2 + 1.0) |
|
c_out = -sigma / (sigma**2 + 1.0) ** 0.5 |
|
c_in = 1.0 / (sigma**2 + 1.0) ** 0.5 |
|
c_noise = 0.25 * sigma.log() |
|
return c_skip, c_out, c_in, c_noise |
|
|