Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,20 +24,15 @@ def get_timestamp_prefix() -> str:
|
|
24 |
def nlp_engine_and_registry(model_family: str, model_path: str) -> tuple:
|
25 |
"""🤖 Sparks NLP models with a wink!"""
|
26 |
registry = RecognizerRegistry()
|
|
|
27 |
if model_family.lower() == "flair":
|
28 |
from flair.models import SequenceTagger
|
29 |
tagger = SequenceTagger.load(model_path)
|
30 |
-
registry.load_predefined_recognizers()
|
31 |
-
recognizer = PatternRecognizer(supported_entity="CUSTOM", supported_language="en")
|
32 |
-
registry.add_recognizer(recognizer)
|
33 |
logger.info(f"Flair model loaded: {model_path}")
|
34 |
return tagger, registry
|
35 |
elif model_family.lower() == "huggingface":
|
36 |
from transformers import pipeline
|
37 |
nlp = pipeline("ner", model=model_path, tokenizer=model_path)
|
38 |
-
registry.load_predefined_recognizers()
|
39 |
-
recognizer = PatternRecognizer(supported_entity="CUSTOM", supported_language="en")
|
40 |
-
registry.add_recognizer(recognizer)
|
41 |
logger.info(f"HuggingFace model loaded: {model_path}")
|
42 |
return nlp, registry
|
43 |
raise ValueError(f"Model family {model_family} unsupported")
|
@@ -84,44 +79,31 @@ def save_pdf(pdf_input) -> str:
|
|
84 |
logger.error(f"Upload rejected: {pdf_input.name} exceeds 200MB")
|
85 |
st.error("PDF exceeds 200MB limit")
|
86 |
raise ValueError("PDF too big")
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
return tmp.name
|
92 |
-
except Exception as e:
|
93 |
-
logger.error(f"Upload failed: {str(e)}")
|
94 |
-
st.error(f"Upload error: {str(e)}")
|
95 |
-
raise
|
96 |
|
97 |
# Feature Spotlight: 📄 PDF Wizardry Unleashed!
|
98 |
# Uploads zip through, PHI vanishes, and out pops a safe PDF with timestamp pizzazz! ✨
|
99 |
|
100 |
def read_pdf(pdf_path: str) -> str:
|
101 |
"""📖 Gobbles PDF text like candy!"""
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
return text
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Read failed: {str(e)}")
|
109 |
-
raise
|
110 |
|
111 |
def create_pdf(text: str, input_path: str, output_filename: str) -> str:
|
112 |
"""🖨️ Spins a new PDF with PHI-proof charm!"""
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
return output_filename
|
122 |
-
except Exception as e:
|
123 |
-
logger.error(f"Create failed: {str(e)}")
|
124 |
-
raise
|
125 |
|
126 |
# Sidebar
|
127 |
st.sidebar.header("PHI De-identification with Presidio")
|
|
|
24 |
def nlp_engine_and_registry(model_family: str, model_path: str) -> tuple:
|
25 |
"""🤖 Sparks NLP models with a wink!"""
|
26 |
registry = RecognizerRegistry()
|
27 |
+
registry.load_predefined_recognizers()
|
28 |
if model_family.lower() == "flair":
|
29 |
from flair.models import SequenceTagger
|
30 |
tagger = SequenceTagger.load(model_path)
|
|
|
|
|
|
|
31 |
logger.info(f"Flair model loaded: {model_path}")
|
32 |
return tagger, registry
|
33 |
elif model_family.lower() == "huggingface":
|
34 |
from transformers import pipeline
|
35 |
nlp = pipeline("ner", model=model_path, tokenizer=model_path)
|
|
|
|
|
|
|
36 |
logger.info(f"HuggingFace model loaded: {model_path}")
|
37 |
return nlp, registry
|
38 |
raise ValueError(f"Model family {model_family} unsupported")
|
|
|
79 |
logger.error(f"Upload rejected: {pdf_input.name} exceeds 200MB")
|
80 |
st.error("PDF exceeds 200MB limit")
|
81 |
raise ValueError("PDF too big")
|
82 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf", dir="/tmp") as tmp:
|
83 |
+
tmp.write(pdf_input.read())
|
84 |
+
logger.info(f"Uploaded PDF to {tmp.name}, size: {pdf_input.size} bytes")
|
85 |
+
return tmp.name
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
# Feature Spotlight: 📄 PDF Wizardry Unleashed!
|
88 |
# Uploads zip through, PHI vanishes, and out pops a safe PDF with timestamp pizzazz! ✨
|
89 |
|
90 |
def read_pdf(pdf_path: str) -> str:
|
91 |
"""📖 Gobbles PDF text like candy!"""
|
92 |
+
reader = PdfReader(pdf_path)
|
93 |
+
text = "".join(page.extract_text() or "" + "\n" for page in reader.pages)
|
94 |
+
logger.info(f"Extracted {len(text)} chars from {pdf_path}")
|
95 |
+
return text
|
|
|
|
|
|
|
|
|
96 |
|
97 |
def create_pdf(text: str, input_path: str, output_filename: str) -> str:
|
98 |
"""🖨️ Spins a new PDF with PHI-proof charm!"""
|
99 |
+
reader = PdfReader(input_path)
|
100 |
+
writer = PdfWriter()
|
101 |
+
for page in reader.pages:
|
102 |
+
writer.add_page(page)
|
103 |
+
with open(output_filename, "wb") as f:
|
104 |
+
writer.write(f)
|
105 |
+
logger.info(f"Created PDF: {output_filename}")
|
106 |
+
return output_filename
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Sidebar
|
109 |
st.sidebar.header("PHI De-identification with Presidio")
|