Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,355 +1,349 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from gradio_client import Client
|
3 |
-
import time
|
4 |
-
import concurrent.futures
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
elif isinstance(result, list) and len(result) > 0:
|
139 |
-
image_data = result[0]
|
140 |
-
if isinstance(image_data, bytes):
|
141 |
-
return ("SD 3.5 Large", Image.open(io.BytesIO(image_data)))
|
142 |
-
elif isinstance(image_data, str):
|
143 |
-
if image_data.startswith('http'):
|
144 |
-
response = requests.get(image_data)
|
145 |
-
return ("SD 3.5 Large", Image.open(io.BytesIO(response.content)))
|
146 |
-
return ("SD 3.5 Large", Image.open(image_data))
|
147 |
-
return ("SD 3.5 Large", "Error: No valid image data found")
|
148 |
-
except Exception as e:
|
149 |
-
return ("SD 3.5 Large", f"Error: {str(e)}")
|
150 |
-
|
151 |
-
@staticmethod
|
152 |
-
def generate_playground_v2_5(prompt, token):
|
153 |
-
try:
|
154 |
-
client = Client("https://playgroundai-playground-v2-5.hf.space/--replicas/ji5gy/",
|
155 |
-
hf_token=token)
|
156 |
-
result = client.predict(
|
157 |
-
prompt,
|
158 |
-
prompt, # negative prompt
|
159 |
-
True, # use negative prompt
|
160 |
-
0, # seed
|
161 |
-
1024, # width
|
162 |
-
1024, # height
|
163 |
-
7.5, # guidance scale
|
164 |
-
True, # randomize seed
|
165 |
-
api_name="/run"
|
166 |
)
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
"SD 3.5 Large": lambda p: ModelGenerator.generate_stable_diffusion_35(p, token),
|
193 |
-
"Playground v2.5": lambda p: ModelGenerator.generate_playground_v2_5(p, token)
|
194 |
-
}
|
195 |
-
|
196 |
-
for model in selected_models:
|
197 |
-
if model in model_map:
|
198 |
-
futures.append(executor.submit(model_map[model], prompt))
|
199 |
-
|
200 |
-
for future in concurrent.futures.as_completed(futures):
|
201 |
-
try:
|
202 |
-
result = future.result()
|
203 |
-
if result:
|
204 |
-
results.append(result)
|
205 |
-
except Exception as e:
|
206 |
-
st.error(f"Error during image generation: {str(e)}")
|
207 |
-
|
208 |
-
return results
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
st.error("Please login with your HuggingFace account first!")
|
213 |
-
return
|
214 |
-
|
215 |
-
st.session_state[f'selected_prompt_{key}'] = prompt_text
|
216 |
-
|
217 |
-
selected_models = st.session_state.get('selected_models', [])
|
218 |
-
|
219 |
-
if not selected_models:
|
220 |
-
st.warning("Please select at least one model from the sidebar!")
|
221 |
-
return
|
222 |
-
|
223 |
-
with st.spinner('Generating artwork...'):
|
224 |
-
results = generate_images(prompt_text, selected_models)
|
225 |
-
st.session_state[f'generated_images_{key}'] = results
|
226 |
-
st.success("Artwork generated successfully!")
|
227 |
-
|
228 |
-
def main():
|
229 |
-
st.title("🎨 Multi-Model Art Generator")
|
230 |
-
|
231 |
-
# Handle authentication in sidebar
|
232 |
-
with st.sidebar:
|
233 |
-
st.header("🔐 Authentication")
|
234 |
-
if st.session_state.get('is_authenticated') and st.session_state.get('hf_token'):
|
235 |
-
st.success("✓ Logged in to HuggingFace")
|
236 |
-
if st.button("Logout"):
|
237 |
-
st.session_state['hf_token'] = None
|
238 |
-
st.session_state['is_authenticated'] = False
|
239 |
-
st.rerun()
|
240 |
-
else:
|
241 |
-
token = st.text_input("Enter HuggingFace Token", type="password",
|
242 |
-
help="Get your token from https://huggingface.co/settings/tokens")
|
243 |
-
if st.button("Login"):
|
244 |
-
if token:
|
245 |
-
try:
|
246 |
-
# Verify token is valid
|
247 |
-
api = HfApi(token=token)
|
248 |
-
api.whoami()
|
249 |
-
st.session_state['hf_token'] = token
|
250 |
-
st.session_state['is_authenticated'] = True
|
251 |
-
st.success("Successfully logged in!")
|
252 |
-
st.rerun()
|
253 |
-
except Exception as e:
|
254 |
-
st.error(f"Authentication failed: {str(e)}")
|
255 |
-
else:
|
256 |
-
st.error("Please enter your HuggingFace token")
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
["Midjourney", "Stable Cascade", "SD 3 Medium", "SD 3.5 Large", "Playground v2.5"],
|
264 |
-
default=["Midjourney"]
|
265 |
-
)
|
266 |
-
|
267 |
-
st.markdown("---")
|
268 |
-
st.markdown("### Selected Models:")
|
269 |
-
for model in st.session_state['selected_models']:
|
270 |
-
st.write(f"✓ {model}")
|
271 |
-
|
272 |
-
st.markdown("---")
|
273 |
-
st.markdown("### Model Information:")
|
274 |
-
st.markdown("""
|
275 |
-
- **Midjourney**: Best for artistic and creative imagery
|
276 |
-
- **Stable Cascade**: New architecture with high detail
|
277 |
-
- **SD 3 Medium**: Fast and efficient generation
|
278 |
-
- **SD 3.5 Large**: Highest quality, slower generation
|
279 |
-
- **Playground v2.5**: Advanced model with high customization
|
280 |
-
""")
|
281 |
-
|
282 |
-
# Only show the main interface if authenticated
|
283 |
-
if st.session_state.get('is_authenticated') and st.session_state.get('hf_token'):
|
284 |
-
st.markdown("### Select a prompt style to generate artwork:")
|
285 |
-
|
286 |
-
prompt_emojis = {
|
287 |
-
"AIart/AIArtistCommunity": "🤖",
|
288 |
-
"Black & White": "⚫⚪",
|
289 |
-
"Black & Yellow": "⚫💛",
|
290 |
-
"Blindfold": "🙈",
|
291 |
-
"Break": "💔",
|
292 |
-
"Broken": "🔨",
|
293 |
-
"Christmas Celebrations art": "🎄",
|
294 |
-
"Colorful Art": "🎨",
|
295 |
-
"Crimson art": "🔴",
|
296 |
-
"Eyes Art": "👁️",
|
297 |
-
"Going out with Style": "💃",
|
298 |
-
"Hooded Girl": "🧥",
|
299 |
-
"Lips": "👄",
|
300 |
-
"MAEKHLONG": "🏮",
|
301 |
-
"Mermaid": "🧜♀️",
|
302 |
-
"Morning Sunshine": "🌅",
|
303 |
-
"Music Art": "🎵",
|
304 |
-
"Owl": "🦉",
|
305 |
-
"Pink": "💗",
|
306 |
-
"Purple": "💜",
|
307 |
-
"Rain": "🌧️",
|
308 |
-
"Red Moon": "🌑",
|
309 |
-
"Rose": "🌹",
|
310 |
-
"Snow": "❄️",
|
311 |
-
"Spacesuit Girl": "👩🚀",
|
312 |
-
"Steampunk": "⚙️",
|
313 |
-
"Succubus": "😈",
|
314 |
-
"Sunlight": "☀️",
|
315 |
-
"Weird art": "🎭",
|
316 |
-
"White Hair": "👱♀️",
|
317 |
-
"Wings art": "👼",
|
318 |
-
"Woman with Sword": "⚔️"
|
319 |
-
}
|
320 |
-
|
321 |
-
col1, col2, col3 = st.columns(3)
|
322 |
-
|
323 |
-
for idx, (prompt, emoji) in enumerate(prompt_emojis.items()):
|
324 |
-
full_prompt = f"QT {prompt}"
|
325 |
-
col = [col1, col2, col3][idx % 3]
|
326 |
-
|
327 |
-
with col:
|
328 |
-
if st.button(f"{emoji} {prompt}", key=f"btn_{idx}"):
|
329 |
-
handle_prompt_click(full_prompt, idx)
|
330 |
-
|
331 |
-
st.markdown("---")
|
332 |
-
st.markdown("### Generated Artwork:")
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
if __name__ == "__main__":
|
355 |
-
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
import base64
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
from PIL import Image
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
import glob
|
11 |
+
from datetime import datetime
|
12 |
+
import pandas as pd
|
13 |
+
import json
|
14 |
+
import re
|
15 |
+
|
16 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
17 |
+
|
18 |
+
DESCRIPTION = """# 🎨 ArtForge: Community AI Gallery
|
19 |
+
|
20 |
+
Create, curate, and compete with AI-generated art. Join our creative multiplayer experience! 🖼️🏆✨
|
21 |
+
"""
|
22 |
+
|
23 |
+
# Global variables
|
24 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
25 |
+
LIKES_CACHE_FILE = "likes_cache.json"
|
26 |
+
|
27 |
+
def load_likes_cache():
|
28 |
+
if os.path.exists(LIKES_CACHE_FILE):
|
29 |
+
with open(LIKES_CACHE_FILE, 'r') as f:
|
30 |
+
return json.load(f)
|
31 |
+
return {}
|
32 |
+
|
33 |
+
def save_likes_cache(cache):
|
34 |
+
with open(LIKES_CACHE_FILE, 'w') as f:
|
35 |
+
json.dump(cache, f)
|
36 |
+
|
37 |
+
likes_cache = load_likes_cache()
|
38 |
+
|
39 |
+
def create_download_link(filename):
|
40 |
+
with open(filename, "rb") as file:
|
41 |
+
encoded_string = base64.b64encode(file.read()).decode('utf-8')
|
42 |
+
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
|
43 |
+
return download_link
|
44 |
+
|
45 |
+
def save_image(img, prompt):
|
46 |
+
global image_metadata, likes_cache
|
47 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
48 |
+
safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50] # Limit to 50 characters
|
49 |
+
safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-')
|
50 |
+
filename = f"{timestamp}_{safe_prompt}.png"
|
51 |
+
img.save(filename)
|
52 |
+
new_row = pd.DataFrame({
|
53 |
+
'Filename': [filename],
|
54 |
+
'Prompt': [prompt],
|
55 |
+
'Likes': [0],
|
56 |
+
'Dislikes': [0],
|
57 |
+
'Hearts': [0],
|
58 |
+
'Created': [datetime.now()]
|
59 |
+
})
|
60 |
+
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True)
|
61 |
+
likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
|
62 |
+
save_likes_cache(likes_cache)
|
63 |
+
return filename
|
64 |
+
|
65 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
66 |
+
if randomize_seed:
|
67 |
+
seed = random.randint(0, MAX_SEED)
|
68 |
+
return seed
|
69 |
+
|
70 |
+
def get_image_gallery():
|
71 |
+
global image_metadata
|
72 |
+
image_files = image_metadata['Filename'].tolist()
|
73 |
+
return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)]
|
74 |
+
|
75 |
+
def get_image_caption(filename):
|
76 |
+
global likes_cache, image_metadata
|
77 |
+
if filename in likes_cache:
|
78 |
+
likes = likes_cache[filename]['likes']
|
79 |
+
dislikes = likes_cache[filename]['dislikes']
|
80 |
+
hearts = likes_cache[filename]['hearts']
|
81 |
+
prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0]
|
82 |
+
return f"{filename}\nPrompt: {prompt}\n👍 {likes} 👎 {dislikes} ❤️ {hearts}"
|
83 |
+
return filename
|
84 |
+
|
85 |
+
def delete_all_images():
|
86 |
+
global image_metadata, likes_cache
|
87 |
+
for file in image_metadata['Filename']:
|
88 |
+
if os.path.exists(file):
|
89 |
+
os.remove(file)
|
90 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
91 |
+
likes_cache = {}
|
92 |
+
save_likes_cache(likes_cache)
|
93 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
94 |
+
|
95 |
+
def delete_image(filename):
|
96 |
+
global image_metadata, likes_cache
|
97 |
+
if filename and os.path.exists(filename):
|
98 |
+
os.remove(filename)
|
99 |
+
image_metadata = image_metadata[image_metadata['Filename'] != filename]
|
100 |
+
if filename in likes_cache:
|
101 |
+
del likes_cache[filename]
|
102 |
+
save_likes_cache(likes_cache)
|
103 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
104 |
+
|
105 |
+
def vote(filename, vote_type):
|
106 |
+
global likes_cache
|
107 |
+
if filename in likes_cache:
|
108 |
+
likes_cache[filename][vote_type.lower()] += 1
|
109 |
+
save_likes_cache(likes_cache)
|
110 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
111 |
+
|
112 |
+
def get_random_style():
|
113 |
+
styles = [
|
114 |
+
"Impressionist", "Cubist", "Surrealist", "Abstract Expressionist",
|
115 |
+
"Pop Art", "Minimalist", "Baroque", "Art Nouveau", "Pointillist", "Fauvism"
|
116 |
+
]
|
117 |
+
return random.choice(styles)
|
118 |
+
|
119 |
+
MAX_SEED = np.iinfo(np.int32).max
|
120 |
+
|
121 |
+
if not torch.cuda.is_available():
|
122 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
|
123 |
+
|
124 |
+
USE_TORCH_COMPILE = 0
|
125 |
+
ENABLE_CPU_OFFLOAD = 0
|
126 |
+
|
127 |
+
if torch.cuda.is_available():
|
128 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
129 |
+
"fluently/Fluently-XL-v4",
|
130 |
+
torch_dtype=torch.float16,
|
131 |
+
use_safetensors=True,
|
132 |
+
)
|
133 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
134 |
+
|
135 |
+
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
136 |
+
pipe.set_adapters("dalle")
|
137 |
+
|
138 |
+
pipe.to("cuda")
|
139 |
+
|
140 |
+
@spaces.GPU(enable_queue=True)
|
141 |
+
def generate(
|
142 |
+
prompt: str,
|
143 |
+
negative_prompt: str = "",
|
144 |
+
use_negative_prompt: bool = False,
|
145 |
+
seed: int = 0,
|
146 |
+
width: int = 1024,
|
147 |
+
height: int = 1024,
|
148 |
+
guidance_scale: float = 3,
|
149 |
+
randomize_seed: bool = False,
|
150 |
+
progress=gr.Progress(track_tqdm=True),
|
151 |
+
):
|
152 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
153 |
+
|
154 |
+
if not use_negative_prompt:
|
155 |
+
negative_prompt = ""
|
156 |
+
|
157 |
+
images = pipe(
|
158 |
+
prompt=prompt,
|
159 |
+
negative_prompt=negative_prompt,
|
160 |
+
width=width,
|
161 |
+
height=height,
|
162 |
+
guidance_scale=guidance_scale,
|
163 |
+
num_inference_steps=20,
|
164 |
+
num_images_per_prompt=1,
|
165 |
+
cross_attention_kwargs={"scale": 0.65},
|
166 |
+
output_type="pil",
|
167 |
+
).images
|
168 |
+
image_paths = [save_image(img, prompt) for img in images]
|
169 |
+
download_links = [create_download_link(path) for path in image_paths]
|
170 |
+
|
171 |
+
return image_paths, seed, download_links, get_image_gallery(), image_metadata.values.tolist()
|
172 |
+
|
173 |
+
examples = [
|
174 |
+
f"{get_random_style()} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.",
|
175 |
+
f"{get_random_style()} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.",
|
176 |
+
f"{get_random_style()} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.",
|
177 |
+
f"{get_random_style()} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.",
|
178 |
+
f"{get_random_style()} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.",
|
179 |
+
f"{get_random_style()} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.",
|
180 |
+
f"{get_random_style()} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.",
|
181 |
+
f"{get_random_style()} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.",
|
182 |
+
f"{get_random_style()} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.",
|
183 |
+
f"{get_random_style()} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach."
|
184 |
+
]
|
185 |
+
|
186 |
+
css = '''
|
187 |
+
.gradio-container{max-width: 1024px !important}
|
188 |
+
h1{text-align:center}
|
189 |
+
footer {
|
190 |
+
visibility: hidden
|
191 |
+
}
|
192 |
+
'''
|
193 |
+
|
194 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
195 |
+
gr.Markdown(DESCRIPTION)
|
196 |
+
|
197 |
+
with gr.Tab("Generate Images"):
|
198 |
+
with gr.Group():
|
199 |
+
with gr.Row():
|
200 |
+
prompt = gr.Text(
|
201 |
+
label="Prompt",
|
202 |
+
show_label=False,
|
203 |
+
max_lines=1,
|
204 |
+
placeholder="Enter your prompt",
|
205 |
+
container=False,
|
206 |
+
)
|
207 |
+
run_button = gr.Button("Run", scale=0)
|
208 |
+
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
|
209 |
+
with gr.Accordion("Advanced options", open=False):
|
210 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
211 |
+
negative_prompt = gr.Text(
|
212 |
+
label="Negative prompt",
|
213 |
+
lines=4,
|
214 |
+
max_lines=6,
|
215 |
+
value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
|
216 |
+
placeholder="Enter a negative prompt",
|
217 |
+
visible=True,
|
218 |
)
|
219 |
+
seed = gr.Slider(
|
220 |
+
label="Seed",
|
221 |
+
minimum=0,
|
222 |
+
maximum=MAX_SEED,
|
223 |
+
step=1,
|
224 |
+
value=0,
|
225 |
+
visible=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
)
|
227 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
228 |
+
with gr.Row(visible=True):
|
229 |
+
width = gr.Slider(
|
230 |
+
label="Width",
|
231 |
+
minimum=512,
|
232 |
+
maximum=2048,
|
233 |
+
step=8,
|
234 |
+
value=1920,
|
235 |
+
)
|
236 |
+
height = gr.Slider(
|
237 |
+
label="Height",
|
238 |
+
minimum=512,
|
239 |
+
maximum=2048,
|
240 |
+
step=8,
|
241 |
+
value=1080,
|
242 |
+
)
|
243 |
+
with gr.Row():
|
244 |
+
guidance_scale = gr.Slider(
|
245 |
+
label="Guidance Scale",
|
246 |
+
minimum=0.1,
|
247 |
+
maximum=20.0,
|
248 |
+
step=0.1,
|
249 |
+
value=20.0,
|
250 |
+
)
|
251 |
|
252 |
+
gr.Examples(
|
253 |
+
examples=examples,
|
254 |
+
inputs=prompt,
|
255 |
+
outputs=[result, seed],
|
256 |
+
fn=generate,
|
257 |
+
cache_examples=False,
|
258 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
with gr.Tab("Gallery and Voting"):
|
261 |
+
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
with gr.Row():
|
264 |
+
like_button = gr.Button("👍 Like")
|
265 |
+
dislike_button = gr.Button("👎 Dislike")
|
266 |
+
heart_button = gr.Button("❤️ Heart")
|
267 |
+
delete_image_button = gr.Button("🗑️ Delete Selected Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
selected_image = gr.State(None)
|
270 |
+
|
271 |
+
with gr.Tab("Metadata and Management"):
|
272 |
+
metadata_df = gr.Dataframe(
|
273 |
+
label="Image Metadata",
|
274 |
+
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
|
275 |
+
interactive=False
|
276 |
+
)
|
277 |
+
delete_all_button = gr.Button("🗑️ Delete All Images")
|
278 |
+
|
279 |
+
use_negative_prompt.change(
|
280 |
+
fn=lambda x: gr.update(visible=x),
|
281 |
+
inputs=use_negative_prompt,
|
282 |
+
outputs=negative_prompt,
|
283 |
+
api_name=False,
|
284 |
+
)
|
285 |
+
|
286 |
+
delete_all_button.click(
|
287 |
+
fn=delete_all_images,
|
288 |
+
inputs=[],
|
289 |
+
outputs=[image_gallery, metadata_df],
|
290 |
+
)
|
291 |
+
|
292 |
+
image_gallery.select(
|
293 |
+
fn=lambda evt: evt,
|
294 |
+
inputs=[],
|
295 |
+
outputs=[selected_image],
|
296 |
+
)
|
297 |
+
|
298 |
+
like_button.click(
|
299 |
+
fn=lambda x: vote(x, 'likes'),
|
300 |
+
inputs=[selected_image],
|
301 |
+
outputs=[image_gallery, metadata_df],
|
302 |
+
)
|
303 |
+
|
304 |
+
dislike_button.click(
|
305 |
+
fn=lambda x: vote(x, 'dislikes'),
|
306 |
+
inputs=[selected_image],
|
307 |
+
outputs=[image_gallery, metadata_df],
|
308 |
+
)
|
309 |
+
|
310 |
+
heart_button.click(
|
311 |
+
fn=lambda x: vote(x, 'hearts'),
|
312 |
+
inputs=[selected_image],
|
313 |
+
outputs=[image_gallery, metadata_df],
|
314 |
+
)
|
315 |
+
|
316 |
+
delete_image_button.click(
|
317 |
+
fn=delete_image,
|
318 |
+
inputs=[selected_image],
|
319 |
+
outputs=[image_gallery, metadata_df],
|
320 |
+
)
|
321 |
+
|
322 |
+
def update_gallery_and_metadata():
|
323 |
+
return gr.update(value=get_image_gallery()), gr.update(value=image_metadata.values.tolist())
|
324 |
+
|
325 |
+
gr.on(
|
326 |
+
triggers=[
|
327 |
+
prompt.submit,
|
328 |
+
negative_prompt.submit,
|
329 |
+
run_button.click,
|
330 |
+
],
|
331 |
+
fn=generate,
|
332 |
+
inputs=[
|
333 |
+
prompt,
|
334 |
+
negative_prompt,
|
335 |
+
use_negative_prompt,
|
336 |
+
seed,
|
337 |
+
width,
|
338 |
+
height,
|
339 |
+
guidance_scale,
|
340 |
+
randomize_seed,
|
341 |
+
],
|
342 |
+
outputs=[result, seed, gr.HTML(visible=False), image_gallery, metadata_df],
|
343 |
+
api_name="run",
|
344 |
+
)
|
345 |
+
|
346 |
+
demo.load(fn=update_gallery_and_metadata, outputs=[image_gallery, metadata_df])
|
347 |
|
348 |
if __name__ == "__main__":
|
349 |
+
demo.queue(max_size=20).launch(share=True, debug=False)
|