Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import edge_tts
|
3 |
+
import asyncio
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
from huggingface_hub import InferenceClient
|
7 |
+
import re
|
8 |
+
from streaming_stt_nemo import Model
|
9 |
+
import torch
|
10 |
+
import random
|
11 |
+
import pandas as pd
|
12 |
+
from datetime import datetime
|
13 |
+
import base64
|
14 |
+
import io
|
15 |
+
import json
|
16 |
+
|
17 |
+
default_lang = "en"
|
18 |
+
engines = { default_lang: Model(default_lang) }
|
19 |
+
|
20 |
+
def transcribe(audio):
|
21 |
+
lang = "en"
|
22 |
+
model = engines[lang]
|
23 |
+
text = model.stt_file(audio)[0]
|
24 |
+
return text
|
25 |
+
|
26 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
27 |
+
|
28 |
+
def client_fn(model):
|
29 |
+
if "Mixtral" in model:
|
30 |
+
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
31 |
+
elif "Llama" in model:
|
32 |
+
return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
33 |
+
elif "Mistral" in model:
|
34 |
+
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.2")
|
35 |
+
elif "Phi" in model:
|
36 |
+
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
|
37 |
+
else:
|
38 |
+
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
|
39 |
+
|
40 |
+
def randomize_seed_fn(seed: int) -> int:
|
41 |
+
seed = random.randint(0, 999999)
|
42 |
+
return seed
|
43 |
+
|
44 |
+
system_instructions1 = """
|
45 |
+
[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark.'
|
46 |
+
Keep conversation friendly, short, clear, and concise.
|
47 |
+
Avoid unnecessary introductions and answer the user's questions directly.
|
48 |
+
Respond in a normal, conversational manner while being friendly and helpful.
|
49 |
+
[USER]
|
50 |
+
"""
|
51 |
+
|
52 |
+
# Initialize an empty DataFrame to store the history
|
53 |
+
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
|
54 |
+
|
55 |
+
def save_history():
|
56 |
+
history_df.to_json('chat_history.json', orient='records')
|
57 |
+
|
58 |
+
def load_history():
|
59 |
+
global history_df
|
60 |
+
try:
|
61 |
+
history_df = pd.read_json('chat_history.json', orient='records')
|
62 |
+
except FileNotFoundError:
|
63 |
+
history_df = pd.DataFrame(columns=['Timestamp', 'Request', 'Response'])
|
64 |
+
return history_df
|
65 |
+
|
66 |
+
def models(text, model="Mixtral 8x7B", seed=42):
|
67 |
+
global history_df
|
68 |
+
|
69 |
+
seed = int(randomize_seed_fn(seed))
|
70 |
+
generator = torch.Generator().manual_seed(seed)
|
71 |
+
|
72 |
+
client = client_fn(model)
|
73 |
+
|
74 |
+
generate_kwargs = dict(
|
75 |
+
max_new_tokens=300,
|
76 |
+
seed=seed
|
77 |
+
)
|
78 |
+
formatted_prompt = system_instructions1 + text + "[JARVIS]"
|
79 |
+
stream = client.text_generation(
|
80 |
+
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
81 |
+
output = ""
|
82 |
+
for response in stream:
|
83 |
+
if not response.token.text == "</s>":
|
84 |
+
output += response.token.text
|
85 |
+
|
86 |
+
# Add the current interaction to the history DataFrame
|
87 |
+
new_row = pd.DataFrame({
|
88 |
+
'Timestamp': [datetime.now().strftime("%Y-%m-%d %H:%M:%S")], # Convert to string
|
89 |
+
'Request': [text],
|
90 |
+
'Response': [output]
|
91 |
+
})
|
92 |
+
history_df = pd.concat([history_df, new_row], ignore_index=True)
|
93 |
+
save_history()
|
94 |
+
|
95 |
+
return output
|
96 |
+
|
97 |
+
async def respond(audio, model, seed):
|
98 |
+
user = transcribe(audio)
|
99 |
+
reply = models(user, model, seed)
|
100 |
+
communicate = edge_tts.Communicate(reply)
|
101 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
|
102 |
+
tmp_path = tmp_file.name
|
103 |
+
await communicate.save(tmp_path)
|
104 |
+
return tmp_path, gr.Audio.update(interactive=True)
|
105 |
+
|
106 |
+
def display_history():
|
107 |
+
return load_history()
|
108 |
+
|
109 |
+
def download_history():
|
110 |
+
csv_buffer = io.StringIO()
|
111 |
+
history_df.to_csv(csv_buffer, index=False)
|
112 |
+
csv_string = csv_buffer.getvalue()
|
113 |
+
b64 = base64.b64encode(csv_string.encode()).decode()
|
114 |
+
href = f'data:text/csv;base64,{b64}'
|
115 |
+
return gr.HTML(f'<a href="{href}" download="chat_history.csv">Download Chat History</a>')
|
116 |
+
|
117 |
+
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
|
118 |
+
### <center>A personal Assistant of Tony Stark for YOU
|
119 |
+
### <center>Voice Chat with your personal Assistant</center>
|
120 |
+
"""
|
121 |
+
|
122 |
+
with gr.Blocks(css="style.css") as demo:
|
123 |
+
gr.Markdown(DESCRIPTION)
|
124 |
+
with gr.Row():
|
125 |
+
select = gr.Dropdown([
|
126 |
+
'Mixtral 8x7B',
|
127 |
+
'Llama 3 8B',
|
128 |
+
'Mistral 7B v0.3',
|
129 |
+
'Phi 3 mini',
|
130 |
+
],
|
131 |
+
value="Mistral 7B v0.3",
|
132 |
+
label="Model"
|
133 |
+
)
|
134 |
+
seed = gr.Slider(
|
135 |
+
label="Seed",
|
136 |
+
minimum=0,
|
137 |
+
maximum=999999,
|
138 |
+
step=1,
|
139 |
+
value=0,
|
140 |
+
visible=False
|
141 |
+
)
|
142 |
+
|
143 |
+
input_audio = gr.Audio(label="User", sources="microphone", type="filepath")
|
144 |
+
output_audio = gr.Audio(label="AI", type="filepath", autoplay=True)
|
145 |
+
|
146 |
+
# Add a DataFrame to display the history
|
147 |
+
history_display = gr.DataFrame(label="Query History")
|
148 |
+
|
149 |
+
# Add a download button for the history
|
150 |
+
download_button = gr.Button("Download History")
|
151 |
+
download_link = gr.HTML()
|
152 |
+
|
153 |
+
def process_audio(audio, model, seed):
|
154 |
+
response, audio_update = asyncio.run(respond(audio, model, seed))
|
155 |
+
return response, audio_update, display_history()
|
156 |
+
|
157 |
+
input_audio.change(
|
158 |
+
fn=process_audio,
|
159 |
+
inputs=[input_audio, select, seed],
|
160 |
+
outputs=[output_audio, input_audio, history_display]
|
161 |
+
)
|
162 |
+
|
163 |
+
# Connect the download button to the download function
|
164 |
+
download_button.click(fn=download_history, outputs=[download_link])
|
165 |
+
|
166 |
+
# Load history when the page is refreshed
|
167 |
+
demo.load(fn=display_history, outputs=[history_display])
|
168 |
+
|
169 |
+
if __name__ == "__main__":
|
170 |
+
demo.queue(max_size=200).launch(share=True)
|