|
import streamlit as st |
|
import openai |
|
import os |
|
import base64 |
|
import glob |
|
import json |
|
import mistune |
|
import pytz |
|
import math |
|
import requests |
|
import time |
|
|
|
from datetime import datetime |
|
from openai import ChatCompletion |
|
from xml.etree import ElementTree as ET |
|
from bs4 import BeautifulSoup |
|
from collections import deque |
|
from audio_recorder_streamlit import audio_recorder |
|
|
|
def generate_filename(prompt, file_type): |
|
central = pytz.timezone('US/Central') |
|
safe_date_time = datetime.now(central).strftime("%m%d_%I%M") |
|
safe_prompt = "".join(x for x in prompt if x.isalnum())[:45] |
|
return f"{safe_date_time}_{safe_prompt}.{file_type}" |
|
|
|
def transcribe_audio(openai_key, file_path, model): |
|
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" |
|
headers = { |
|
"Authorization": f"Bearer {openai_key}", |
|
} |
|
with open(file_path, 'rb') as f: |
|
data = {'file': f} |
|
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) |
|
if response.status_code == 200: |
|
st.write(response.json()) |
|
|
|
response2 = chat_with_model(response.json().get('text'), '') |
|
st.write('Responses:') |
|
|
|
st.write(response2) |
|
return response.json().get('text') |
|
else: |
|
st.write(response.json()) |
|
st.error("Error in API call.") |
|
return None |
|
|
|
def save_and_play_audio(audio_recorder): |
|
audio_bytes = audio_recorder() |
|
if audio_bytes: |
|
filename = generate_filename("Recording", "wav") |
|
with open(filename, 'wb') as f: |
|
f.write(audio_bytes) |
|
st.audio(audio_bytes, format="audio/wav") |
|
return filename |
|
return None |
|
|
|
def create_file(filename, prompt, response): |
|
if filename.endswith(".txt"): |
|
with open(filename, 'w') as file: |
|
file.write(f"{prompt}\n{response}") |
|
elif filename.endswith(".htm"): |
|
with open(filename, 'w') as file: |
|
file.write(f"{prompt} {response}") |
|
elif filename.endswith(".md"): |
|
with open(filename, 'w') as file: |
|
file.write(f"{prompt}\n\n{response}") |
|
|
|
def truncate_document(document, length): |
|
return document[:length] |
|
def divide_document(document, max_length): |
|
return [document[i:i+max_length] for i in range(0, len(document), max_length)] |
|
|
|
def get_table_download_link(file_path): |
|
with open(file_path, 'r') as file: |
|
data = file.read() |
|
b64 = base64.b64encode(data.encode()).decode() |
|
file_name = os.path.basename(file_path) |
|
ext = os.path.splitext(file_name)[1] |
|
if ext == '.txt': |
|
mime_type = 'text/plain' |
|
elif ext == '.py': |
|
mime_type = 'text/plain' |
|
elif ext == '.xlsx': |
|
mime_type = 'text/plain' |
|
elif ext == '.csv': |
|
mime_type = 'text/plain' |
|
elif ext == '.htm': |
|
mime_type = 'text/html' |
|
elif ext == '.md': |
|
mime_type = 'text/markdown' |
|
else: |
|
mime_type = 'application/octet-stream' |
|
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' |
|
return href |
|
|
|
def CompressXML(xml_text): |
|
root = ET.fromstring(xml_text) |
|
for elem in list(root.iter()): |
|
if isinstance(elem.tag, str) and 'Comment' in elem.tag: |
|
elem.parent.remove(elem) |
|
return ET.tostring(root, encoding='unicode', method="xml") |
|
|
|
def read_file_content(file,max_length): |
|
if file.type == "application/json": |
|
content = json.load(file) |
|
return str(content) |
|
elif file.type == "text/html" or file.type == "text/htm": |
|
content = BeautifulSoup(file, "html.parser") |
|
return content.text |
|
elif file.type == "application/xml" or file.type == "text/xml": |
|
tree = ET.parse(file) |
|
root = tree.getroot() |
|
xml = CompressXML(ET.tostring(root, encoding='unicode')) |
|
return xml |
|
elif file.type == "text/markdown" or file.type == "text/md": |
|
md = mistune.create_markdown() |
|
content = md(file.read().decode()) |
|
return content |
|
elif file.type == "text/plain": |
|
return file.getvalue().decode() |
|
else: |
|
return "" |
|
|
|
def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'): |
|
model = model_choice |
|
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] |
|
conversation.append({'role': 'user', 'content': prompt}) |
|
if len(document_section)>0: |
|
conversation.append({'role': 'assistant', 'content': document_section}) |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
report = [] |
|
res_box = st.empty() |
|
|
|
collected_chunks = [] |
|
collected_messages = [] |
|
|
|
for chunk in openai.ChatCompletion.create( |
|
model='gpt-3.5-turbo', |
|
messages=conversation, |
|
temperature=0.5, |
|
stream=True |
|
): |
|
|
|
|
|
collected_chunks.append(chunk) |
|
chunk_message = chunk['choices'][0]['delta'] |
|
collected_messages.append(chunk_message) |
|
|
|
content=chunk["choices"][0].get("delta",{}).get("content") |
|
|
|
|
|
|
|
|
|
try: |
|
report.append(content) |
|
if len(content) > 0: |
|
result = "".join(report).strip() |
|
result = result.replace("\n", "") |
|
res_box.markdown(f'*{result}*') |
|
except: |
|
st.write('.') |
|
|
|
full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) |
|
|
|
st.write("Elapsed time:") |
|
st.write(time.time() - start_time) |
|
return full_reply_content |
|
|
|
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): |
|
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] |
|
conversation.append({'role': 'user', 'content': prompt}) |
|
if len(file_content)>0: |
|
conversation.append({'role': 'assistant', 'content': file_content}) |
|
response = openai.ChatCompletion.create(model=model_choice, messages=conversation) |
|
return response['choices'][0]['message']['content'] |
|
|
|
|
|
def main(): |
|
|
|
openai.api_key = os.getenv('OPENAI_KEY') |
|
st.set_page_config(page_title="GPT Streamlit Document Reasoner",layout="wide") |
|
menu = ["htm", "txt", "xlsx", "csv", "md", "py"] |
|
choice = st.sidebar.selectbox("Output File Type:", menu) |
|
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) |
|
|
|
|
|
filename = save_and_play_audio(audio_recorder) |
|
if filename is not None: |
|
transcription = transcribe_audio(openai.api_key, filename, "whisper-1") |
|
st.write(transcription) |
|
gptOutput = chat_with_model(transcription, '', model_choice) |
|
filename = generate_filename(transcription, choice) |
|
create_file(filename, transcription, gptOutput) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
|
|
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) |
|
|
|
collength, colupload = st.columns([2,3]) |
|
with collength: |
|
|
|
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) |
|
with colupload: |
|
uploaded_file = st.file_uploader("Add a file for context:", type=["xml", "json", "xlsx","csv","html", "htm", "md", "txt"]) |
|
|
|
document_sections = deque() |
|
document_responses = {} |
|
|
|
if uploaded_file is not None: |
|
file_content = read_file_content(uploaded_file, max_length) |
|
document_sections.extend(divide_document(file_content, max_length)) |
|
|
|
if len(document_sections) > 0: |
|
|
|
if st.button("ποΈ View Upload"): |
|
st.markdown("**Sections of the uploaded file:**") |
|
for i, section in enumerate(list(document_sections)): |
|
st.markdown(f"**Section {i+1}**\n{section}") |
|
|
|
st.markdown("**Chat with the model:**") |
|
for i, section in enumerate(list(document_sections)): |
|
if i in document_responses: |
|
st.markdown(f"**Section {i+1}**\n{document_responses[i]}") |
|
else: |
|
if st.button(f"Chat about Section {i+1}"): |
|
st.write('Reasoning with your inputs...') |
|
response = chat_with_model(user_prompt, section, model_choice) |
|
st.write('Response:') |
|
st.write(response) |
|
document_responses[i] = response |
|
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) |
|
create_file(filename, user_prompt, response) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
if st.button('π¬ Chat'): |
|
st.write('Reasoning with your inputs...') |
|
response = chat_with_model(user_prompt, ''.join(list(document_sections,)), model_choice) |
|
st.write('Response:') |
|
st.write(response) |
|
|
|
filename = generate_filename(user_prompt, choice) |
|
create_file(filename, user_prompt, response) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
all_files = glob.glob("*.*") |
|
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] |
|
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) |
|
|
|
|
|
file_contents='' |
|
next_action='' |
|
for file in all_files: |
|
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) |
|
with col1: |
|
if st.button("π", key="md_"+file): |
|
with open(file, 'r') as f: |
|
file_contents = f.read() |
|
next_action='md' |
|
with col2: |
|
st.markdown(get_table_download_link(file), unsafe_allow_html=True) |
|
with col3: |
|
if st.button("π", key="open_"+file): |
|
with open(file, 'r') as f: |
|
file_contents = f.read() |
|
next_action='open' |
|
with col4: |
|
if st.button("π", key="read_"+file): |
|
with open(file, 'r') as f: |
|
file_contents = f.read() |
|
next_action='search' |
|
with col5: |
|
if st.button("π", key="delete_"+file): |
|
os.remove(file) |
|
st.experimental_rerun() |
|
|
|
if len(file_contents) > 0: |
|
if next_action=='open': |
|
file_content_area = st.text_area("File Contents:", file_contents, height=500) |
|
if next_action=='md': |
|
st.markdown(file_contents) |
|
if next_action=='search': |
|
file_content_area = st.text_area("File Contents:", file_contents, height=500) |
|
st.write('Reasoning with your inputs...') |
|
|
|
response = chat_with_model(user_prompt, file_contents, model_choice) |
|
st.write('Response:') |
|
st.write(response) |
|
filename = generate_filename(file_content_area, choice) |
|
create_file(filename, file_content_area, response) |
|
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) |
|
|
|
if __name__ == "__main__": |
|
main() |