Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import subprocess | |
import time | |
import random | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras import layers, models | |
from transformers import BertTokenizer, TFBertModel | |
import requests | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
import base64 | |
# ---------------------------- Helper Function for NER Data ---------------------------- | |
def generate_ner_data(): | |
# Sample NER data for different entities | |
data_person = [{"text": f"Person example {i}", "entities": [{"entity": "Person", "value": f"Person {i}"}]} for i in range(1, 21)] | |
data_organization = [{"text": f"Organization example {i}", "entities": [{"entity": "Organization", "value": f"Organization {i}"}]} for i in range(1, 21)] | |
data_location = [{"text": f"Location example {i}", "entities": [{"entity": "Location", "value": f"Location {i}"}]} for i in range(1, 21)] | |
data_date = [{"text": f"Date example {i}", "entities": [{"entity": "Date", "value": f"Date {i}"}]} for i in range(1, 21)] | |
data_product = [{"text": f"Product example {i}", "entities": [{"entity": "Product", "value": f"Product {i}"}]} for i in range(1, 21)] | |
# Create a dictionary of all NER examples | |
ner_data = { | |
"Person": data_person, | |
"Organization": data_organization, | |
"Location": data_location, | |
"Date": data_date, | |
"Product": data_product | |
} | |
return ner_data | |
# ---------------------------- Fun NER Data Function ---------------------------- | |
def ner_demo(): | |
st.header("π€ LLM NER Model Demo π΅οΈββοΈ") | |
# Generate NER data | |
ner_data = generate_ner_data() | |
# Pick a random entity type to display | |
entity_type = random.choice(list(ner_data.keys())) | |
st.subheader(f"Here comes the {entity_type} entity recognition, ready to show its magic! π©β¨") | |
# Select a random record to display | |
example = random.choice(ner_data[entity_type]) | |
st.write(f"Analyzing: *{example['text']}*") | |
# Display recognized entity | |
for entity in example["entities"]: | |
st.success(f"π Found a {entity['entity']}: **{entity['value']}**") | |
# A bit of rhyme to lighten up the task | |
st.write("There once was an AI so bright, π") | |
st.write("It could spot any name in sight, ποΈ") | |
st.write("With a click or a tap, it put on its cap, π©") | |
st.write("And found entities day or night! π") | |
# ---------------------------- Helper: Text Data Augmentation ---------------------------- | |
def word_subtraction(text): | |
"""Subtract words at random positions.""" | |
words = text.split() | |
if len(words) > 2: | |
index = random.randint(0, len(words) - 1) | |
words.pop(index) | |
return " ".join(words) | |
def word_recombination(text): | |
"""Recombine words with random shuffling.""" | |
words = text.split() | |
random.shuffle(words) | |
return " ".join(words) | |
# ---------------------------- ML Model Building ---------------------------- | |
def build_small_model(input_shape): | |
model = models.Sequential() | |
model.add(layers.Dense(64, activation='relu', input_shape=(input_shape,))) | |
model.add(layers.Dense(32, activation='relu')) | |
model.add(layers.Dense(1, activation='sigmoid')) | |
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) | |
return model | |
# ---------------------------- TensorFlow and Keras Integration ---------------------------- | |
def train_model_demo(): | |
st.header("π§ͺ Let's Build a Mini TensorFlow Model π") | |
# Generate random synthetic data for simplicity | |
data_size = 100 | |
X_train = np.random.rand(data_size, 10) | |
y_train = np.random.randint(0, 2, size=data_size) | |
st.write(f"π **Data Shape**: {X_train.shape}, with binary target labels.") | |
# Build the model | |
model = build_small_model(X_train.shape[1]) | |
st.write("π§ **Model Summary**:") | |
st.text(model.summary()) | |
# Train the model | |
st.write("π **Training the model...**") | |
history = model.fit(X_train, y_train, epochs=5, batch_size=16, verbose=0) | |
# Output training results humorously | |
st.success("π Training completed! The model now knows its ABCs... or 1s and 0s at least! π") | |
st.write(f"Final training loss: **{history.history['loss'][-1]:.4f}**, accuracy: **{history.history['accuracy'][-1]:.4f}**") | |
st.write("Fun fact: This model can make predictions on binary outcomes like whether a cat will sleep or not. π±π€") | |
# ---------------------------- Additional Useful Examples ---------------------------- | |
def code_snippet_sharing(): | |
st.header("π€ Code Snippet Sharing with Syntax Highlighting π₯οΈ") | |
code = '''def hello_world(): | |
print("Hello, world!")''' | |
st.code(code, language='python') | |
st.write("Developers often need to share code snippets. Here's how you can display code with syntax highlighting in Streamlit! π") | |
def file_uploader_example(): | |
st.header("π File Uploader Example π€") | |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv") | |
if uploaded_file is not None: | |
data = pd.read_csv(uploaded_file) | |
st.write("π File uploaded successfully!") | |
st.dataframe(data.head()) | |
st.write("Use file uploaders to allow users to bring their own data into your app! π") | |
def matplotlib_plot_example(): | |
st.header("π Matplotlib Plot Example π") | |
# Generate data | |
x = np.linspace(0, 10, 100) | |
y = np.sin(x) | |
# Create plot | |
fig, ax = plt.subplots() | |
ax.plot(x, y) | |
ax.set_title('Sine Wave') | |
st.pyplot(fig) | |
st.write("You can integrate Matplotlib plots directly into your Streamlit app! π¨") | |
def cache_example(): | |
st.header("β‘ Streamlit Cache Example π") | |
def expensive_computation(a, b): | |
time.sleep(2) | |
return a * b | |
st.write("Let's compute something that takes time...") | |
result = expensive_computation(2, 21) | |
st.write(f"The result is {result}. But thanks to caching, it's faster the next time! β‘") | |
# ---------------------------- Display Tweet ---------------------------- | |
def display_tweet(): | |
st.header("π¦ Tweet Spotlight: TensorFlow and Transformers π") | |
tweet_html = ''' | |
<blockquote class="twitter-tweet"> | |
<p lang="en" dir="ltr"> | |
Just tried integrating TensorFlow with Transformers for my latest LLM project! π | |
The synergy between them is incredible. TensorFlow's flexibility combined with Transformers' power boosts Generative AI capabilities to new heights! π₯ #TensorFlow #Transformers #AI #MachineLearning | |
</p>— AI Enthusiast (@ai_enthusiast) <a href="https://twitter.com/ai_enthusiast/status/1234567890">September 30, 2024</a> | |
</blockquote> | |
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script> | |
''' | |
st.components.v1.html(tweet_html, height=300) | |
st.write("Tweets can be embedded to showcase social proof or updates. Isn't that neat? π€") | |
# ---------------------------- Header and Introduction ---------------------------- | |
st.set_page_config(page_title="LLMs and Tiny ML Models", page_icon="π€", layout="wide", initial_sidebar_state="expanded") | |
st.title("π€π LLMs and Tiny ML Models with TensorFlow ππ€") | |
st.markdown("This app demonstrates how to build small TensorFlow models, solve common developer problems, and augment text data using word subtraction and recombination strategies.") | |
st.markdown("---") | |
# ---------------------------- Main Navigation ---------------------------- | |
st.sidebar.title("Navigation") | |
options = st.sidebar.radio("Go to", ['NER Demo', 'TensorFlow Model', 'Text Augmentation', 'Code Sharing', 'File Uploader', 'Matplotlib Plot', 'Streamlit Cache', 'Tweet Spotlight']) | |
if options == 'NER Demo': | |
if st.button('π§ͺ Run NER Model Demo'): | |
ner_demo() | |
else: | |
st.write("Click the button above to start the AI NER magic! π©β¨") | |
elif options == 'TensorFlow Model': | |
if st.button('π Build and Train a TensorFlow Model'): | |
train_model_demo() | |
elif options == 'Text Augmentation': | |
st.subheader("π² Fun Text Augmentation with Random Strategies π²") | |
input_text = st.text_input("Enter a sentence to see some augmentation magic! β¨", "TensorFlow is awesome!") | |
if st.button("Subtract Random Words"): | |
st.write(f"Original: **{input_text}**") | |
st.write(f"Augmented: **{word_subtraction(input_text)}**") | |
if st.button("Recombine Words"): | |
st.write(f"Original: **{input_text}**") | |
st.write(f"Augmented: **{word_recombination(input_text)}**") | |
st.write("Try both and see how the magic works! π©β¨") | |
elif options == 'Code Sharing': | |
code_snippet_sharing() | |
elif options == 'File Uploader': | |
file_uploader_example() | |
elif options == 'Matplotlib Plot': | |
matplotlib_plot_example() | |
elif options == 'Streamlit Cache': | |
cache_example() | |
elif options == 'Tweet Spotlight': | |
display_tweet() | |
st.markdown("---") | |
# ---------------------------- Footer and Additional Resources ---------------------------- | |
st.subheader("π Additional Resources") | |
st.markdown(""" | |
- [Official Streamlit Documentation](https://docs.streamlit.io/) | |
- [TensorFlow Documentation](https://www.tensorflow.org/api_docs) | |
- [Transformers Documentation](https://huggingface.co/docs/transformers/index) | |
- [Streamlit Cheat Sheet](https://docs.streamlit.io/library/cheatsheet) | |
- [Matplotlib Documentation](https://matplotlib.org/stable/contents.html) | |
""") | |
# ---------------------------- requirements.txt ---------------------------- | |
st.markdown(''' | |
Reference Libraries: | |
plaintext | |
streamlit | |
pandas | |
numpy | |
tensorflow | |
transformers | |
matplotlib | |
''') |