Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,10 @@ import numpy as np
|
|
7 |
import tensorflow as tf
|
8 |
from tensorflow.keras import layers, models
|
9 |
from transformers import BertTokenizer, TFBertModel
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# ---------------------------- Helper Function for NER Data ----------------------------
|
12 |
|
@@ -109,42 +113,122 @@ def train_model_demo():
|
|
109 |
st.write(f"Final training loss: **{history.history['loss'][-1]:.4f}**, accuracy: **{history.history['accuracy'][-1]:.4f}**")
|
110 |
st.write("Fun fact: This model can make predictions on binary outcomes like whether a cat will sleep or not. π±π€")
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
# ---------------------------- Header and Introduction ----------------------------
|
113 |
|
114 |
st.set_page_config(page_title="LLMs and Tiny ML Models", page_icon="π€", layout="wide", initial_sidebar_state="expanded")
|
115 |
st.title("π€π LLMs and Tiny ML Models with TensorFlow ππ€")
|
116 |
-
st.markdown("This app demonstrates how to build
|
117 |
st.markdown("---")
|
118 |
|
119 |
-
# ----------------------------
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
else:
|
124 |
-
st.write("Click the button above to start the AI NER magic! π©β¨")
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
|
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
|
|
|
134 |
|
135 |
-
|
|
|
136 |
|
137 |
-
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
st.write(f"Augmented: **{word_subtraction(input_text)}**")
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
st.write(f"Augmented: **{word_recombination(input_text)}**")
|
146 |
|
147 |
-
st.write("Try both and see how the magic works! π©β¨")
|
148 |
st.markdown("---")
|
149 |
|
150 |
# ---------------------------- Footer and Additional Resources ----------------------------
|
@@ -152,15 +236,20 @@ st.markdown("---")
|
|
152 |
st.subheader("π Additional Resources")
|
153 |
st.markdown("""
|
154 |
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
155 |
-
- [
|
156 |
-
- [
|
157 |
-
- [
|
158 |
-
- [
|
159 |
""")
|
160 |
|
161 |
-
# ----------------------------
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import tensorflow as tf
|
8 |
from tensorflow.keras import layers, models
|
9 |
from transformers import BertTokenizer, TFBertModel
|
10 |
+
import requests
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
from io import BytesIO
|
13 |
+
import base64
|
14 |
|
15 |
# ---------------------------- Helper Function for NER Data ----------------------------
|
16 |
|
|
|
113 |
st.write(f"Final training loss: **{history.history['loss'][-1]:.4f}**, accuracy: **{history.history['accuracy'][-1]:.4f}**")
|
114 |
st.write("Fun fact: This model can make predictions on binary outcomes like whether a cat will sleep or not. π±π€")
|
115 |
|
116 |
+
# ---------------------------- Additional Useful Examples ----------------------------
|
117 |
+
|
118 |
+
def code_snippet_sharing():
|
119 |
+
st.header("π€ Code Snippet Sharing with Syntax Highlighting π₯οΈ")
|
120 |
+
|
121 |
+
code = '''def hello_world():
|
122 |
+
print("Hello, world!")'''
|
123 |
+
|
124 |
+
st.code(code, language='python')
|
125 |
+
|
126 |
+
st.write("Developers often need to share code snippets. Here's how you can display code with syntax highlighting in Streamlit! π")
|
127 |
+
|
128 |
+
def file_uploader_example():
|
129 |
+
st.header("π File Uploader Example π€")
|
130 |
+
|
131 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
132 |
+
if uploaded_file is not None:
|
133 |
+
data = pd.read_csv(uploaded_file)
|
134 |
+
st.write("π File uploaded successfully!")
|
135 |
+
st.dataframe(data.head())
|
136 |
+
st.write("Use file uploaders to allow users to bring their own data into your app! π")
|
137 |
+
|
138 |
+
def matplotlib_plot_example():
|
139 |
+
st.header("π Matplotlib Plot Example π")
|
140 |
+
|
141 |
+
# Generate data
|
142 |
+
x = np.linspace(0, 10, 100)
|
143 |
+
y = np.sin(x)
|
144 |
+
|
145 |
+
# Create plot
|
146 |
+
fig, ax = plt.subplots()
|
147 |
+
ax.plot(x, y)
|
148 |
+
ax.set_title('Sine Wave')
|
149 |
+
st.pyplot(fig)
|
150 |
+
|
151 |
+
st.write("You can integrate Matplotlib plots directly into your Streamlit app! π¨")
|
152 |
+
|
153 |
+
def cache_example():
|
154 |
+
st.header("β‘ Streamlit Cache Example π")
|
155 |
+
|
156 |
+
@st.cache
|
157 |
+
def expensive_computation(a, b):
|
158 |
+
time.sleep(2)
|
159 |
+
return a * b
|
160 |
+
|
161 |
+
st.write("Let's compute something that takes time...")
|
162 |
+
result = expensive_computation(2, 21)
|
163 |
+
st.write(f"The result is {result}. But thanks to caching, it's faster the next time! β‘")
|
164 |
+
|
165 |
+
# ---------------------------- Display Tweet ----------------------------
|
166 |
+
|
167 |
+
def display_tweet():
|
168 |
+
st.header("π¦ Tweet Spotlight: TensorFlow and Transformers π")
|
169 |
+
|
170 |
+
tweet_html = '''
|
171 |
+
<blockquote class="twitter-tweet">
|
172 |
+
<p lang="en" dir="ltr">
|
173 |
+
Just tried integrating TensorFlow with Transformers for my latest LLM project! π
|
174 |
+
The synergy between them is incredible. TensorFlow's flexibility combined with Transformers' power boosts Generative AI capabilities to new heights! π₯ #TensorFlow #Transformers #AI #MachineLearning
|
175 |
+
</p>— AI Enthusiast (@ai_enthusiast) <a href="https://twitter.com/ai_enthusiast/status/1234567890">September 30, 2024</a>
|
176 |
+
</blockquote>
|
177 |
+
<script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
|
178 |
+
'''
|
179 |
+
|
180 |
+
st.components.v1.html(tweet_html, height=300)
|
181 |
+
|
182 |
+
st.write("Tweets can be embedded to showcase social proof or updates. Isn't that neat? π€")
|
183 |
+
|
184 |
# ---------------------------- Header and Introduction ----------------------------
|
185 |
|
186 |
st.set_page_config(page_title="LLMs and Tiny ML Models", page_icon="π€", layout="wide", initial_sidebar_state="expanded")
|
187 |
st.title("π€π LLMs and Tiny ML Models with TensorFlow ππ€")
|
188 |
+
st.markdown("This app demonstrates how to build small TensorFlow models, solve common developer problems, and augment text data using word subtraction and recombination strategies.")
|
189 |
st.markdown("---")
|
190 |
|
191 |
+
# ---------------------------- Main Navigation ----------------------------
|
192 |
|
193 |
+
st.sidebar.title("Navigation")
|
194 |
+
options = st.sidebar.radio("Go to", ['NER Demo', 'TensorFlow Model', 'Text Augmentation', 'Code Sharing', 'File Uploader', 'Matplotlib Plot', 'Streamlit Cache', 'Tweet Spotlight'])
|
|
|
|
|
195 |
|
196 |
+
if options == 'NER Demo':
|
197 |
+
if st.button('π§ͺ Run NER Model Demo'):
|
198 |
+
ner_demo()
|
199 |
+
else:
|
200 |
+
st.write("Click the button above to start the AI NER magic! π©β¨")
|
201 |
|
202 |
+
elif options == 'TensorFlow Model':
|
203 |
+
if st.button('π Build and Train a TensorFlow Model'):
|
204 |
+
train_model_demo()
|
205 |
|
206 |
+
elif options == 'Text Augmentation':
|
207 |
+
st.subheader("π² Fun Text Augmentation with Random Strategies π²")
|
208 |
+
input_text = st.text_input("Enter a sentence to see some augmentation magic! β¨", "TensorFlow is awesome!")
|
209 |
+
if st.button("Subtract Random Words"):
|
210 |
+
st.write(f"Original: **{input_text}**")
|
211 |
+
st.write(f"Augmented: **{word_subtraction(input_text)}**")
|
212 |
+
if st.button("Recombine Words"):
|
213 |
+
st.write(f"Original: **{input_text}**")
|
214 |
+
st.write(f"Augmented: **{word_recombination(input_text)}**")
|
215 |
+
st.write("Try both and see how the magic works! π©β¨")
|
216 |
|
217 |
+
elif options == 'Code Sharing':
|
218 |
+
code_snippet_sharing()
|
219 |
|
220 |
+
elif options == 'File Uploader':
|
221 |
+
file_uploader_example()
|
222 |
|
223 |
+
elif options == 'Matplotlib Plot':
|
224 |
+
matplotlib_plot_example()
|
225 |
|
226 |
+
elif options == 'Streamlit Cache':
|
227 |
+
cache_example()
|
|
|
228 |
|
229 |
+
elif options == 'Tweet Spotlight':
|
230 |
+
display_tweet()
|
|
|
231 |
|
|
|
232 |
st.markdown("---")
|
233 |
|
234 |
# ---------------------------- Footer and Additional Resources ----------------------------
|
|
|
236 |
st.subheader("π Additional Resources")
|
237 |
st.markdown("""
|
238 |
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
239 |
+
- [TensorFlow Documentation](https://www.tensorflow.org/api_docs)
|
240 |
+
- [Transformers Documentation](https://huggingface.co/docs/transformers/index)
|
241 |
+
- [Streamlit Cheat Sheet](https://docs.streamlit.io/library/cheatsheet)
|
242 |
+
- [Matplotlib Documentation](https://matplotlib.org/stable/contents.html)
|
243 |
""")
|
244 |
|
245 |
+
# ---------------------------- requirements.txt ----------------------------
|
246 |
+
st.markdown('''
|
247 |
+
Reference Libraries:
|
248 |
+
plaintext
|
249 |
+
streamlit
|
250 |
+
pandas
|
251 |
+
numpy
|
252 |
+
tensorflow
|
253 |
+
transformers
|
254 |
+
matplotlib
|
255 |
+
''')
|