File size: 10,331 Bytes
a509ab0
 
 
 
 
 
 
 
7b713bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a509ab0
 
 
 
 
 
 
 
 
 
 
a033cb4
a509ab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a033cb4
a509ab0
 
a033cb4
a509ab0
a033cb4
a509ab0
a033cb4
a509ab0
a033cb4
 
a509ab0
a033cb4
 
 
a509ab0
 
 
a033cb4
a509ab0
a033cb4
a509ab0
a033cb4
 
 
a509ab0
a033cb4
a509ab0
a033cb4
 
 
 
 
 
 
a509ab0
a033cb4
a509ab0
a033cb4
a509ab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba2c98
 
a01c571
 
 
 
 
4ba2c98
 
a509ab0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import streamlit as st
import openai
import pandas as pd
from typing import List, Tuple
from uuid import uuid4
import time

# 1. πŸ› οΈ Configuration
Site_Name = '🌟 Self-Taught Reasoner (STaR) App'
title = "πŸ€”πŸŒŸ STaR: Self-Taught Reasoner - Bootstrapping Reasoning With Reasoning"
helpURL = 'https://arxiv.org/abs/2203.14465'
bugURL = 'https://arxiv.org/pdf/2203.14465'
icons = 'πŸŒŸπŸ€”'

useConfig = True
if useConfig:
    st.set_page_config(
        page_title=title,
        page_icon=icons,
        layout="wide",
        initial_sidebar_state="auto",
        menu_items={
            'Get Help': helpURL,
            'Report a bug': bugURL,
            'About': title
        }
    )
    
# πŸ”‘ Set the OpenAI API key from an environment variable
openai.api_key = os.getenv("OPENAI_API_KEY")

# πŸ†” Function to generate a unique session ID for caching
def get_session_id():
    if 'session_id' not in st.session_state:
        st.session_state.session_id = str(uuid4())
    return st.session_state.session_id

# 🧠 STaR Algorithm Implementation
class SelfTaughtReasoner:
    def __init__(self, model_engine="gpt-3.5-turbo"):
        self.model_engine = model_engine
        self.prompt_examples = []  # Initialize with an empty list
        self.iterations = 0
        self.generated_data = pd.DataFrame(columns=['Problem', 'Rationale', 'Answer', 'Is_Correct'])
        self.rationalized_data = pd.DataFrame(columns=['Problem', 'Rationale', 'Answer', 'Is_Correct'])
        self.fine_tuned_model = None  # πŸ—οΈ Placeholder for fine-tuned model

    def add_prompt_example(self, problem: str, rationale: str, answer: str):
        """
        βž• Adds a prompt example to the few-shot examples.
        """
        self.prompt_examples.append({
            'Problem': problem,
            'Rationale': rationale,
            'Answer': answer
        })

    def construct_prompt(self, problem: str, include_answer: bool = False, answer: str = "") -> List[dict]:
        """
        πŸ“ Constructs the prompt for the OpenAI API call.
        Converts examples into the new chat format, where each example is a user message.
        """
        messages = []
        for example in self.prompt_examples:
            messages.append({"role": "system", "content": f"Problem: {example['Problem']}\nRationale: {example['Rationale']}\nAnswer: {example['Answer']}\n"})

        messages.append({"role": "user", "content": f"Problem: {problem}\nRationale:"})
        
        if include_answer:
            messages.append({"role": "system", "content": f"Answer: {answer}"})
        
        return messages

    def generate_rationale_and_answer(self, problem: str) -> Tuple[str, str]:
        """
        πŸ€” Generates a rationale and answer for a given problem using openai.ChatCompletion.create.
        """
        messages = self.construct_prompt(problem)
        try:
            response = openai.ChatCompletion.create(
                model=self.model_engine,
                messages=messages,
                max_tokens=150,
                temperature=0.7
            )
            rationale = response.choices[0].message['content'].strip()
            
            # Now generate the answer using the rationale
            messages.append({"role": "system", "content": f"Rationale: {rationale}\nAnswer:"})
            answer_response = openai.ChatCompletion.create(
                model=self.model_engine,
                messages=messages,
                max_tokens=10,
                temperature=0
            )
            answer = answer_response.choices[0].message['content'].strip()
            return rationale, answer
        except Exception as e:
            st.error(f"❌ Error generating rationale and answer: {e}")
            return "", ""

    def fine_tune_model(self):
        """
        πŸ› οΈ Fine-tunes the model on the generated rationales.
        """
        time.sleep(1)  # ⏳ Simulate time taken for fine-tuning
        self.fine_tuned_model = f"{self.model_engine}-fine-tuned-{get_session_id()}"
        st.success(f"βœ… Model fine-tuned: {self.fine_tuned_model}")

    def run_iteration(self, dataset: pd.DataFrame):
        """
        πŸ”„ Runs one iteration of the STaR process.
        """
        st.write(f"### Iteration {self.iterations + 1}")
        progress_bar = st.progress(0)
        total = len(dataset)
        for idx, row in dataset.iterrows():
            problem = row['Problem']
            correct_answer = row['Answer']
            # πŸ€– Generate rationale and answer
            rationale, answer = self.generate_rationale_and_answer(problem)
            is_correct = (answer.lower() == correct_answer.lower())
            # πŸ“ Record the generated data
            self.generated_data = self.generated_data.append({
                'Problem': problem,
                'Rationale': rationale,
                'Answer': answer,
                'Is_Correct': is_correct
            }, ignore_index=True)
            # ❌ If incorrect, perform rationalization
            if not is_correct:
                rationale, answer = self.rationalize(problem, correct_answer)
                is_correct = (answer.lower() == correct_answer.lower())
                if is_correct:
                    self.rationalized_data = self.rationalized_data.append({
                        'Problem': problem,
                        'Rationale': rationale,
                        'Answer': answer,
                        'Is_Correct': is_correct
                    }, ignore_index=True)
            progress_bar.progress((idx + 1) / total)
        # πŸ”§ Fine-tune the model on correct rationales
        st.write("πŸ”„ Fine-tuning the model on correct rationales...")
        self.fine_tune_model()
        self.iterations += 1

# Predefined problem and answer list for dataset
EXAMPLE_PROBLEM_ANSWERS = [
    {"Problem": "What is deductive reasoning?", "Answer": "It is a logical process that draws specific conclusions from general principles."},
    {"Problem": "What is inductive reasoning?", "Answer": "It is reasoning that forms general principles from specific examples."},
    {"Problem": "Explain abductive reasoning.", "Answer": "It involves finding the best explanation for incomplete observations."},
    {"Problem": "What is the capital of France?", "Answer": "Paris."},
    {"Problem": "Who wrote Hamlet?", "Answer": "William Shakespeare."}
]

# Additional problem set for testing fine-tuned model
TEST_PROBLEM_SET = [
    "What is the Pythagorean theorem?",
    "Who developed the theory of relativity?",
    "What is the main ingredient in bread?",
    "Who is the author of 1984?",
    "What is the boiling point of water?"
]

# Convert the example list into 'Problem | Answer' format
def format_examples_for_text_area(examples):
    return '\n'.join([f"{example['Problem']} | {example['Answer']}" for example in examples])

# πŸ–₯️ Streamlit App
def main():
    st.title("πŸ€– Self-Taught Reasoners (STaR)")
    st.markdown('''
# πŸ“„ Papers:
1. 🀫🌟 Quiet-STaR: Language Models Can Teach Themselves to Think πŸ€” Before Speaking πŸ—£οΈ
- πŸ”— https://arxiv.org/abs/2403.09629 - πŸ“„ https://arxiv.org/pdf/2403.09629
2. πŸŒŸπŸ€” STaR: Self-Taught Reasoner - Bootstrapping Reasoning With Reasoning
- πŸ”— https://arxiv.org/abs/2203.14465 - πŸ“„ https://arxiv.org/pdf/2203.14465
    ''')


    # 🧩 Initialize the Self-Taught Reasoner
    if 'star' not in st.session_state:
        st.session_state.star = SelfTaughtReasoner()

    star = st.session_state.star

    # Step 1: Few-Shot Prompt Examples
    st.header("Step 1: Add Few-Shot Prompt Examples")
    st.write("Choose an example from the dropdown or input your own.")

    selected_example = st.selectbox(
        "Select a predefined example",
        [f"Example {i + 1}: {ex['Problem']}" for i, ex in enumerate(EXAMPLE_PROBLEM_ANSWERS)]
    )

    # Prefill with selected example
    example_idx = int(selected_example.split(" ")[1].replace(":", "")) - 1
    example_problem = EXAMPLE_PROBLEM_ANSWERS[example_idx]['Problem']
    example_answer = EXAMPLE_PROBLEM_ANSWERS[example_idx]['Answer']

    st.text_area("Problem", value=example_problem, height=50, key="example_problem")
    st.text_input("Answer", value=example_answer, key="example_answer")

    if st.button("Add Example"):
        star.add_prompt_example(st.session_state.example_problem, "Rationale placeholder", st.session_state.example_answer)
        st.success("Example added successfully!")

    # Step 2: Input Dataset (Problem | Answer format)
    st.header("Step 2: Input Dataset")

    # Provide examples in the format 'Problem | Answer' as a default
    prefilled_data = format_examples_for_text_area(EXAMPLE_PROBLEM_ANSWERS)
    dataset_problems = st.text_area(
        "Enter problems and answers in the format 'Problem | Answer', one per line.",
        value=prefilled_data,
        height=200
    )

    if st.button("Submit Dataset"):
        dataset = []
        lines = dataset_problems.strip().split('\n')
        for line in lines:
            if '|' in line:
                problem, answer = line.split('|', 1)
                dataset.append({'Problem': problem.strip(), 'Answer': answer.strip()})
        st.session_state.dataset = pd.DataFrame(dataset)
        st.success("Dataset loaded.")

    if 'dataset' in st.session_state:
        st.subheader("Current Dataset:")
        st.dataframe(st.session_state.dataset.head())

        # Step 3: Test the Fine-Tuned Model (renamed from Step 4)
        st.header("Step 3: Test the Fine-Tuned Model")

        # Add dropdown for selecting a test problem
        test_problem = st.selectbox(
            "Select a problem to test the fine-tuned model",
            TEST_PROBLEM_SET
        )

        if st.button("Solve Problem"):
            if not test_problem:
                st.warning("Please enter or select a problem to solve.")
            else:
                rationale, answer = star.generate_rationale_and_answer(test_problem)
                st.subheader("Rationale:")
                st.write(rationale)
                st.subheader("Answer:")
                st.write(answer)

    # Footer
    st.write("---")
    st.write("Developed as a demonstration of the STaR method.")

if __name__ == "__main__":
    main()