Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,13 @@ from audio_recorder_streamlit import audio_recorder
|
|
15 |
import json
|
16 |
from openai import OpenAI
|
17 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# Page config
|
20 |
st.set_page_config(
|
@@ -65,7 +72,26 @@ st.markdown("""
|
|
65 |
|
66 |
# Load environment variables
|
67 |
load_dotenv()
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Bike Collections
|
71 |
bike_collections = {
|
@@ -86,14 +112,6 @@ bike_collections = {
|
|
86 |
Lighting: Natural starlight with subtle rim lighting
|
87 |
Color palette: Deep blues, silver highlights, cosmic purples""",
|
88 |
"emoji": "β¨"
|
89 |
-
},
|
90 |
-
"Moonlit Hopper": {
|
91 |
-
"prompt": """A sleek black bike mid-hop over a moonlit meadow.
|
92 |
-
Full moon illuminating misty surroundings with fireflies dancing around.
|
93 |
-
Camera angle: Side profile with slight low angle
|
94 |
-
Lighting: Soft moonlight with atmospheric fog
|
95 |
-
Color palette: Silver blues, soft whites, deep shadows""",
|
96 |
-
"emoji": "π"
|
97 |
}
|
98 |
},
|
99 |
"Nature-Inspired Collection π²": {
|
@@ -104,36 +122,142 @@ bike_collections = {
|
|
104 |
Lighting: Natural forest lighting with sun rays
|
105 |
Color palette: Forest greens, golden sunlight, deep shadows""",
|
106 |
"emoji": "π¦"
|
107 |
-
},
|
108 |
-
"Onyx Leapfrog": {
|
109 |
-
"prompt": """A bike with obsidian-black finish jumping over a sparkling creek.
|
110 |
-
Water reflection creates mirror effect with ripples from the leap.
|
111 |
-
Camera angle: Low angle from water level
|
112 |
-
Lighting: Golden hour side lighting
|
113 |
-
Color palette: Deep blacks, water blues, forest greens""",
|
114 |
-
"emoji": "πΈ"
|
115 |
}
|
116 |
}
|
117 |
}
|
118 |
|
119 |
# File handling functions
|
120 |
def generate_filename(prompt, file_type):
|
121 |
-
"""Generate a safe filename
|
122 |
central = pytz.timezone('US/Central')
|
123 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
124 |
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
|
125 |
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:240]
|
126 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
127 |
|
128 |
-
def
|
129 |
-
"""
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
return filename
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
def process_video(video_path, seconds_per_frame=1):
|
136 |
-
"""
|
137 |
base64Frames = []
|
138 |
video = cv2.VideoCapture(video_path)
|
139 |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
@@ -164,6 +288,7 @@ def process_video(video_path, seconds_per_frame=1):
|
|
164 |
return base64Frames, audio_path
|
165 |
|
166 |
def create_media_gallery():
|
|
|
167 |
st.header("π¬ Media Gallery")
|
168 |
|
169 |
tabs = st.tabs(["πΌοΈ Images", "π΅ Audio", "π₯ Video", "π¨ Scene Generator"])
|
@@ -176,18 +301,31 @@ def create_media_gallery():
|
|
176 |
with cols[idx % 3]:
|
177 |
st.image(image_file)
|
178 |
st.caption(os.path.basename(image_file))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
with tabs[1]:
|
181 |
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
|
182 |
for audio_file in audio_files:
|
183 |
with st.expander(f"π΅ {os.path.basename(audio_file)}"):
|
184 |
st.audio(audio_file)
|
|
|
|
|
185 |
|
186 |
with tabs[2]:
|
187 |
video_files = glob.glob("*.mp4")
|
188 |
for video_file in video_files:
|
189 |
with st.expander(f"π₯ {os.path.basename(video_file)}"):
|
190 |
st.video(video_file)
|
|
|
|
|
|
|
|
|
191 |
|
192 |
with tabs[3]:
|
193 |
for collection_name, bikes in bike_collections.items():
|
@@ -208,51 +346,14 @@ def main():
|
|
208 |
|
209 |
# Main navigation
|
210 |
tab_main = st.radio("Choose Action:",
|
211 |
-
["πΈ Upload Media", "π¬ View Gallery", "π¨ Generate Scene"],
|
212 |
horizontal=True)
|
213 |
|
214 |
if tab_main == "πΈ Upload Media":
|
215 |
col1, col2 = st.columns(2)
|
216 |
|
217 |
with col1:
|
218 |
-
# Image upload
|
219 |
uploaded_image = st.file_uploader("Upload Image", type=['png', 'jpg'])
|
220 |
if uploaded_image:
|
221 |
st.image(uploaded_image)
|
222 |
-
prompt = st
|
223 |
-
if st.button("Process Image"):
|
224 |
-
filename = generate_filename(prompt, uploaded_image.type.split('/')[-1])
|
225 |
-
save_file(uploaded_image.getvalue(), filename, is_binary=True)
|
226 |
-
st.success(f"Saved as {filename}")
|
227 |
-
|
228 |
-
with col2:
|
229 |
-
# Audio/Video upload
|
230 |
-
uploaded_media = st.file_uploader("Upload Audio/Video", type=['mp3', 'wav', 'mp4'])
|
231 |
-
if uploaded_media:
|
232 |
-
if uploaded_media.type.startswith('audio'):
|
233 |
-
st.audio(uploaded_media)
|
234 |
-
else:
|
235 |
-
st.video(uploaded_media)
|
236 |
-
if st.button("Save Media"):
|
237 |
-
filename = generate_filename("media", uploaded_media.type.split('/')[-1])
|
238 |
-
save_file(uploaded_media.getvalue(), filename, is_binary=True)
|
239 |
-
st.success(f"Saved as {filename}")
|
240 |
-
|
241 |
-
elif tab_main == "π¬ View Gallery":
|
242 |
-
create_media_gallery()
|
243 |
-
|
244 |
-
else: # Generate Scene
|
245 |
-
st.header("π¨ Scene Generator")
|
246 |
-
selected_collection = st.selectbox("Choose Collection", list(bike_collections.keys()))
|
247 |
-
selected_bike = st.selectbox("Choose Bike", list(bike_collections[selected_collection].keys()))
|
248 |
-
|
249 |
-
bike_details = bike_collections[selected_collection][selected_bike]
|
250 |
-
st.markdown(f"""
|
251 |
-
<div class='scene-card'>
|
252 |
-
<h3>{bike_details['emoji']} {selected_bike}</h3>
|
253 |
-
<p>{bike_details['prompt']}</p>
|
254 |
-
</div>
|
255 |
-
""", unsafe_allow_html=True)
|
256 |
-
|
257 |
-
if __name__ == "__main__":
|
258 |
-
main()
|
|
|
15 |
import json
|
16 |
from openai import OpenAI
|
17 |
from dotenv import load_dotenv
|
18 |
+
from huggingface_hub import InferenceClient
|
19 |
+
from bs4 import BeautifulSoup
|
20 |
+
import textract
|
21 |
+
from xml.etree import ElementTree as ET
|
22 |
+
from urllib.parse import quote
|
23 |
+
import time
|
24 |
+
from collections import deque
|
25 |
|
26 |
# Page config
|
27 |
st.set_page_config(
|
|
|
72 |
|
73 |
# Load environment variables
|
74 |
load_dotenv()
|
75 |
+
|
76 |
+
# Initialize OpenAI client
|
77 |
+
client = OpenAI(
|
78 |
+
api_key=os.getenv('OPENAI_API_KEY'),
|
79 |
+
organization=os.getenv('OPENAI_ORG_ID')
|
80 |
+
)
|
81 |
+
|
82 |
+
# Initialize session state
|
83 |
+
if "openai_model" not in st.session_state:
|
84 |
+
st.session_state["openai_model"] = "gpt-4o-2024-05-13"
|
85 |
+
if "messages" not in st.session_state:
|
86 |
+
st.session_state.messages = []
|
87 |
+
|
88 |
+
# Hugging Face settings
|
89 |
+
API_URL = os.getenv('API_URL')
|
90 |
+
HF_KEY = os.getenv('HF_KEY')
|
91 |
+
headers = {
|
92 |
+
"Authorization": f"Bearer {HF_KEY}",
|
93 |
+
"Content-Type": "application/json"
|
94 |
+
}
|
95 |
|
96 |
# Bike Collections
|
97 |
bike_collections = {
|
|
|
112 |
Lighting: Natural starlight with subtle rim lighting
|
113 |
Color palette: Deep blues, silver highlights, cosmic purples""",
|
114 |
"emoji": "β¨"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
}
|
116 |
},
|
117 |
"Nature-Inspired Collection π²": {
|
|
|
122 |
Lighting: Natural forest lighting with sun rays
|
123 |
Color palette: Forest greens, golden sunlight, deep shadows""",
|
124 |
"emoji": "π¦"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
}
|
126 |
}
|
127 |
}
|
128 |
|
129 |
# File handling functions
|
130 |
def generate_filename(prompt, file_type):
|
131 |
+
"""Generate a safe filename using the prompt and file type."""
|
132 |
central = pytz.timezone('US/Central')
|
133 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
134 |
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
|
135 |
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:240]
|
136 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
137 |
|
138 |
+
def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
|
139 |
+
"""Create and save file with proper handling of different types."""
|
140 |
+
if not should_save:
|
141 |
+
return None
|
142 |
+
|
143 |
+
filename = generate_filename(prompt if prompt else content, file_type)
|
144 |
+
|
145 |
+
if file_type == "md":
|
146 |
+
title_from_content = extract_markdown_title(content)
|
147 |
+
if title_from_content:
|
148 |
+
filename = generate_filename(title_from_content, file_type)
|
149 |
+
|
150 |
+
with open(filename, "w", encoding="utf-8") as f:
|
151 |
+
if is_image:
|
152 |
+
f.write(content)
|
153 |
+
else:
|
154 |
+
f.write(prompt + "\n\n" + content)
|
155 |
+
|
156 |
return filename
|
157 |
|
158 |
+
def extract_markdown_title(content):
|
159 |
+
"""Extract the first markdown title from content."""
|
160 |
+
title_match = re.search(r'^\s*#\s*(.+)', content, re.MULTILINE)
|
161 |
+
if title_match:
|
162 |
+
return title_match.group(1).strip()
|
163 |
+
return None
|
164 |
+
|
165 |
+
# HTML5 Speech Synthesis
|
166 |
+
@st.cache_resource
|
167 |
+
def SpeechSynthesis(result):
|
168 |
+
documentHTML5 = f'''
|
169 |
+
<!DOCTYPE html>
|
170 |
+
<html>
|
171 |
+
<head>
|
172 |
+
<title>Read It Aloud</title>
|
173 |
+
<script type="text/javascript">
|
174 |
+
function readAloud() {{
|
175 |
+
const text = document.getElementById("textArea").value;
|
176 |
+
const speech = new SpeechSynthesisUtterance(text);
|
177 |
+
window.speechSynthesis.speak(speech);
|
178 |
+
}}
|
179 |
+
</script>
|
180 |
+
</head>
|
181 |
+
<body>
|
182 |
+
<h1>π Read It Aloud</h1>
|
183 |
+
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
|
184 |
+
<br>
|
185 |
+
<button onclick="readAloud()">π Read Aloud</button>
|
186 |
+
</body>
|
187 |
+
</html>
|
188 |
+
'''
|
189 |
+
st.components.v1.html(documentHTML5, width=1280, height=300)
|
190 |
+
|
191 |
+
# Process functions for different media types
|
192 |
+
def process_text(text_input):
|
193 |
+
"""Process text input with GPT-4o."""
|
194 |
+
if text_input:
|
195 |
+
st.session_state.messages.append({"role": "user", "content": text_input})
|
196 |
+
|
197 |
+
with st.chat_message("user"):
|
198 |
+
st.markdown(text_input)
|
199 |
+
|
200 |
+
with st.chat_message("assistant"):
|
201 |
+
completion = client.chat.completions.create(
|
202 |
+
model=st.session_state["openai_model"],
|
203 |
+
messages=[
|
204 |
+
{"role": m["role"], "content": m["content"]}
|
205 |
+
for m in st.session_state.messages
|
206 |
+
],
|
207 |
+
stream=False
|
208 |
+
)
|
209 |
+
return_text = completion.choices[0].message.content
|
210 |
+
st.write("Assistant: " + return_text)
|
211 |
+
|
212 |
+
create_and_save_file(return_text, file_type="md", prompt=text_input)
|
213 |
+
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
214 |
+
|
215 |
+
def process_image(image_input, user_prompt):
|
216 |
+
"""Process image with GPT-4o vision."""
|
217 |
+
if isinstance(image_input, str):
|
218 |
+
with open(image_input, "rb") as image_file:
|
219 |
+
image_input = image_file.read()
|
220 |
+
|
221 |
+
base64_image = base64.b64encode(image_input).decode("utf-8")
|
222 |
+
|
223 |
+
response = client.chat.completions.create(
|
224 |
+
model=st.session_state["openai_model"],
|
225 |
+
messages=[
|
226 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
227 |
+
{"role": "user", "content": [
|
228 |
+
{"type": "text", "text": user_prompt},
|
229 |
+
{"type": "image_url", "image_url": {
|
230 |
+
"url": f"data:image/png;base64,{base64_image}"
|
231 |
+
}}
|
232 |
+
]}
|
233 |
+
],
|
234 |
+
temperature=0.0,
|
235 |
+
)
|
236 |
+
|
237 |
+
return response.choices[0].message.content
|
238 |
+
|
239 |
+
def process_audio(audio_input, text_input=''):
|
240 |
+
"""Process audio with GPT-4o and Whisper."""
|
241 |
+
if isinstance(audio_input, str):
|
242 |
+
with open(audio_input, "rb") as file:
|
243 |
+
audio_input = file.read()
|
244 |
+
|
245 |
+
transcription = client.audio.transcriptions.create(
|
246 |
+
model="whisper-1",
|
247 |
+
file=audio_input,
|
248 |
+
)
|
249 |
+
|
250 |
+
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
251 |
+
|
252 |
+
with st.chat_message("assistant"):
|
253 |
+
st.markdown(transcription.text)
|
254 |
+
SpeechSynthesis(transcription.text)
|
255 |
+
|
256 |
+
filename = generate_filename(transcription.text, "wav")
|
257 |
+
create_and_save_file(audio_input.getvalue(), "wav", transcription.text, True)
|
258 |
+
|
259 |
def process_video(video_path, seconds_per_frame=1):
|
260 |
+
"""Process video files for frame extraction and audio."""
|
261 |
base64Frames = []
|
262 |
video = cv2.VideoCapture(video_path)
|
263 |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
288 |
return base64Frames, audio_path
|
289 |
|
290 |
def create_media_gallery():
|
291 |
+
"""Create the media gallery interface."""
|
292 |
st.header("π¬ Media Gallery")
|
293 |
|
294 |
tabs = st.tabs(["πΌοΈ Images", "π΅ Audio", "π₯ Video", "π¨ Scene Generator"])
|
|
|
301 |
with cols[idx % 3]:
|
302 |
st.image(image_file)
|
303 |
st.caption(os.path.basename(image_file))
|
304 |
+
|
305 |
+
# Add prompt input for GPT-4o analysis
|
306 |
+
prompt = st.text_input(f"Analyze image {idx}",
|
307 |
+
"Describe this image in detail and list key elements.")
|
308 |
+
if st.button(f"Analyze {idx}"):
|
309 |
+
analysis = process_image(image_file, prompt)
|
310 |
+
st.markdown(analysis)
|
311 |
|
312 |
with tabs[1]:
|
313 |
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
|
314 |
for audio_file in audio_files:
|
315 |
with st.expander(f"π΅ {os.path.basename(audio_file)}"):
|
316 |
st.audio(audio_file)
|
317 |
+
if st.button(f"Transcribe {audio_file}"):
|
318 |
+
process_audio(audio_file)
|
319 |
|
320 |
with tabs[2]:
|
321 |
video_files = glob.glob("*.mp4")
|
322 |
for video_file in video_files:
|
323 |
with st.expander(f"π₯ {os.path.basename(video_file)}"):
|
324 |
st.video(video_file)
|
325 |
+
if st.button(f"Analyze {video_file}"):
|
326 |
+
frames, audio = process_video(video_file)
|
327 |
+
if audio:
|
328 |
+
st.audio(audio)
|
329 |
|
330 |
with tabs[3]:
|
331 |
for collection_name, bikes in bike_collections.items():
|
|
|
346 |
|
347 |
# Main navigation
|
348 |
tab_main = st.radio("Choose Action:",
|
349 |
+
["πΈ Upload Media", "π¬ View Gallery", "π¨ Generate Scene", "π€ Chat"],
|
350 |
horizontal=True)
|
351 |
|
352 |
if tab_main == "πΈ Upload Media":
|
353 |
col1, col2 = st.columns(2)
|
354 |
|
355 |
with col1:
|
|
|
356 |
uploaded_image = st.file_uploader("Upload Image", type=['png', 'jpg'])
|
357 |
if uploaded_image:
|
358 |
st.image(uploaded_image)
|
359 |
+
prompt = st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|