RescuerOfStolenBikes / backup8app.py
awacke1's picture
Update backup8app.py
2fbbcd1 verified
import streamlit as st
import anthropic
import openai
import base64
from datetime import datetime
import plotly.graph_objects as go
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit.components.v1 as components
import textract
import time
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy.editor import VideoFileClip
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
# 1. 🚲BikeAI🏆 Configuration and Setup
Site_Name = '🚲BikeAI🏆 Claude and GPT Multi-Agent Research AI'
title = "🚲BikeAI🏆 Claude and GPT Multi-Agent Research AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = '🚲🏆'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# 2. 🚲BikeAI🏆 Load environment variables and initialize clients
load_dotenv()
# OpenAI setup
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None:
openai.api_key = st.secrets['OPENAI_API_KEY']
openai_client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY'),
organization=os.getenv('OPENAI_ORG_ID')
)
# 3.🚲BikeAI🏆 Claude setup
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3")
if anthropic_key == None:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# 4.🚲BikeAI🏆 Initialize session states
if 'transcript_history' not in st.session_state:
st.session_state.transcript_history = []
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-4o-2024-05-13"
if "messages" not in st.session_state:
st.session_state.messages = []
if 'last_voice_input' not in st.session_state:
st.session_state.last_voice_input = ""
# 5. 🚲BikeAI🏆 HuggingFace AI setup
API_URL = os.getenv('API_URL')
HF_KEY = os.getenv('HF_KEY')
MODEL1 = "meta-llama/Llama-2-7b-chat-hf"
MODEL2 = "openai/whisper-small.en"
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
# 6. 🚲BikeAI🏆 Custom CSS
st.markdown("""
<style>
.main {
background: linear-gradient(to right, #1a1a1a, #2d2d2d);
color: #ffffff;
}
.stMarkdown {
font-family: 'Helvetica Neue', sans-serif;
}
.category-header {
background: linear-gradient(45deg, #2b5876, #4e4376);
padding: 20px;
border-radius: 10px;
margin: 10px 0;
}
.scene-card {
background: rgba(0,0,0,0.3);
padding: 15px;
border-radius: 8px;
margin: 10px 0;
border: 1px solid rgba(255,255,255,0.1);
}
.media-gallery {
display: grid;
gap: 1rem;
padding: 1rem;
}
.bike-card {
background: rgba(255,255,255,0.05);
border-radius: 10px;
padding: 15px;
transition: transform 0.3s;
}
.bike-card:hover {
transform: scale(1.02);
}
</style>
""", unsafe_allow_html=True)
# 7. Helper Functions
def generate_filename(prompt, file_type):
"""Generate a safe filename using the prompt and file type."""
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 8. Function to create and save a file (and avoid the black hole of lost data 🕳)
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
with open(filename, 'w', encoding='utf-8') as file:
file.write(prompt + "\n\n" + response)
def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
"""Create and save file with proper handling of different types."""
if not should_save:
return None
filename = generate_filename(prompt if prompt else content, file_type)
with open(filename, "w", encoding="utf-8") as f:
if is_image:
f.write(content)
else:
f.write(prompt + "\n\n" + content if prompt else content)
return filename
def get_download_link(file_path):
"""Create download link for file."""
with open(file_path, "rb") as file:
contents = file.read()
b64 = base64.b64encode(contents).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}📂</a>'
@st.cache_resource
def SpeechSynthesis(result):
"""HTML5 Speech Synthesis."""
documentHTML5 = f'''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {{
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}}
</script>
</head>
<body>
<h1>🔊 Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
<br>
<button onclick="readAloud()">🔊 Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
# Media Processing Functions
def process_image(image_input, user_prompt):
"""Process image with GPT-4o vision."""
if isinstance(image_input, str):
with open(image_input, "rb") as image_file:
image_input = image_file.read()
base64_image = base64.b64encode(image_input).decode("utf-8")
response = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{base64_image}"
}}
]}
],
temperature=0.0,
)
return response.choices[0].message.content
def process_audio(audio_input, text_input=''):
"""Process audio with Whisper and GPT."""
if isinstance(audio_input, str):
with open(audio_input, "rb") as file:
audio_input = file.read()
transcription = openai_client.audio.transcriptions.create(
model="whisper-1",
file=audio_input,
)
st.session_state.messages.append({"role": "user", "content": transcription.text})
with st.chat_message("assistant"):
st.markdown(transcription.text)
SpeechSynthesis(transcription.text)
filename = generate_filename(transcription.text, "wav")
create_and_save_file(audio_input, "wav", transcription.text, True)
def process_video(video_path, seconds_per_frame=1):
"""Process video files for frame extraction and audio."""
base64Frames = []
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
for frame_idx in range(0, total_frames, frames_to_skip):
video.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
video.release()
# Extract audio
base_video_path = os.path.splitext(video_path)[0]
audio_path = f"{base_video_path}.mp3"
try:
video_clip = VideoFileClip(video_path)
video_clip.audio.write_audiofile(audio_path)
video_clip.close()
except:
st.warning("No audio track found in video")
audio_path = None
return base64Frames, audio_path
def process_video_with_gpt(video_input, user_prompt):
"""Process video with GPT-4o vision."""
base64Frames, audio_path = process_video(video_input)
response = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "Analyze the video frames and provide a detailed description."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
*[{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{frame}"}}
for frame in base64Frames]
]}
]
)
return response.choices[0].message.content
def extract_urls(text):
try:
date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})')
abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)')
pdf_link_pattern = re.compile(r'\[⬇️\]\((https://arxiv\.org/pdf/\d+\.\d+)\)')
title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]')
date_matches = date_pattern.findall(text)
abs_link_matches = abs_link_pattern.findall(text)
pdf_link_matches = pdf_link_pattern.findall(text)
title_matches = title_pattern.findall(text)
# markdown with the extracted fields
markdown_text = ""
for i in range(len(date_matches)):
date = date_matches[i]
title = title_matches[i]
abs_link = abs_link_matches[i][1]
pdf_link = pdf_link_matches[i]
markdown_text += f"**Date:** {date}\n\n"
markdown_text += f"**Title:** {title}\n\n"
markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n"
markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n"
markdown_text += "---\n\n"
return markdown_text
except:
st.write('.')
return ''
def search_arxiv(query):
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
return combined_result
#return responseall
# Function to generate a filename based on prompt and time (because names matter 🕒)
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
safe_prompt = re.sub(r'\W+', '_', prompt)[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# Function to create and save a file (and avoid the black hole of lost data 🕳)
def create_file(filename, prompt, response):
with open(filename, 'w', encoding='utf-8') as file:
file.write(prompt + "\n\n" + response)
def perform_ai_lookup(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
20,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
Question = '### 🔎 ' + query + '\r\n' # Format for markdown display with links
References = response1[0]
ReferenceLinks = extract_urls(References)
RunSecondQuery = True
results=''
if RunSecondQuery:
# Search 2 - Retrieve the Summary with Papers Context and Original Query
response2 = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
if len(response2) > 10:
Answer = response2
SpeechSynthesis(Answer)
# Restructure results to follow format of Question, Answer, References, ReferenceLinks
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
st.markdown(results)
st.write('🔍Run of Multi-Agent System Paper Summary Spec is Complete')
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
filename = generate_filename(query, "md")
create_file(filename, query, results)
return results
# Chat Processing Functions
def process_with_gpt(text_input):
"""Process text with GPT-4o."""
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
completion = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=False
)
return_text = completion.choices[0].message.content
st.write("GPT-4o: " + return_text)
#filename = generate_filename(text_input, "md")
filename = generate_filename("GPT-4o: " + return_text, "md")
create_file(filename, text_input, return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
return return_text
def process_with_claude(text_input):
"""Process text with Claude."""
if text_input:
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
response = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": text_input}
]
)
response_text = response.content[0].text
st.write("Claude: " + response_text)
#filename = generate_filename(text_input, "md")
filename = generate_filename("Claude: " + response_text, "md")
create_file(filename, text_input, response_text)
st.session_state.chat_history.append({
"user": text_input,
"claude": response_text
})
return response_text
# File Management Functions
def load_file(file_name):
"""Load file content."""
with open(file_name, "r", encoding='utf-8') as file:
content = file.read()
return content
def create_zip_of_files(files):
"""Create zip archive of files."""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_media_html(media_path, media_type="video", width="100%"):
"""Generate HTML for media player."""
media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
if media_type == "video":
return f'''
<video width="{width}" controls autoplay muted loop>
<source src="data:video/mp4;base64,{media_data}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
else: # audio
return f'''
<audio controls style="width: {width};">
<source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
'''
def create_media_gallery():
"""Create the media gallery interface."""
st.header("🎬 Media Gallery")
tabs = st.tabs(["🖼️ Images", "🎵 Audio", "🎥 Video"])
with tabs[0]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
num_cols = st.slider("Number of columns", 1, 5, 3)
cols = st.columns(num_cols)
for idx, image_file in enumerate(image_files):
with cols[idx % num_cols]:
img = Image.open(image_file)
st.image(img, use_container_width=True)
# Add GPT vision analysis option
if st.button(f"Analyze {os.path.basename(image_file)}"):
analysis = process_image(image_file,
"Describe this image in detail and identify key elements.")
st.markdown(analysis)
with tabs[1]:
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
for audio_file in audio_files:
with st.expander(f"🎵 {os.path.basename(audio_file)}"):
st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(audio_file)}"):
with open(audio_file, "rb") as f:
transcription = process_audio(f)
st.write(transcription)
with tabs[2]:
video_files = glob.glob("*.mp4")
for video_file in video_files:
with st.expander(f"🎥 {os.path.basename(video_file)}"):
st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(video_file)}"):
analysis = process_video_with_gpt(video_file,
"Describe what's happening in this video.")
st.markdown(analysis)
def display_file_manager():
"""Display file management sidebar with guaranteed unique button keys."""
st.sidebar.title("📁 File Management")
all_files = glob.glob("*.md")
all_files.sort(reverse=True)
if st.sidebar.button("🗑 Delete All", key="delete_all_files_button"):
for file in all_files:
os.remove(file)
st.rerun()
if st.sidebar.button("⬇️ Download All", key="download_all_files_button"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)
# Create unique keys using file attributes
for idx, file in enumerate(all_files):
# Get file stats for unique identification
file_stat = os.stat(file)
unique_id = f"{idx}_{file_stat.st_size}_{file_stat.st_mtime}"
col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("🌐", key=f"view_{unique_id}"):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key=f"edit_{unique_id}"):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col4:
if st.button("🗑", key=f"delete_{unique_id}"):
os.remove(file)
st.rerun()
# Speech Recognition HTML Component
speech_recognition_html = """
<!DOCTYPE html>
<html>
<head>
<title>Continuous Speech Demo</title>
<style>
body {
font-family: sans-serif;
padding: 20px;
max-width: 800px;
margin: 0 auto;
}
button {
padding: 10px 20px;
margin: 10px 5px;
font-size: 16px;
}
#status {
margin: 10px 0;
padding: 10px;
background: #e8f5e9;
border-radius: 4px;
}
#output {
white-space: pre-wrap;
padding: 15px;
background: #f5f5f5;
border-radius: 4px;
margin: 10px 0;
min-height: 100px;
max-height: 400px;
overflow-y: auto;
}
.controls {
margin: 10px 0;
}
</style>
</head>
<body>
<div class="controls">
<button id="start">Start Listening</button>
<button id="stop" disabled>Stop Listening</button>
<button id="clear">Clear Text</button>
</div>
<div id="status">Ready</div>
<div id="output"></div>
<script>
if (!('webkitSpeechRecognition' in window)) {
alert('Speech recognition not supported');
} else {
const recognition = new webkitSpeechRecognition();
const startButton = document.getElementById('start');
const stopButton = document.getElementById('stop');
const clearButton = document.getElementById('clear');
const status = document.getElementById('status');
const output = document.getElementById('output');
let fullTranscript = '';
let lastUpdateTime = Date.now();
// Configure recognition
recognition.continuous = true;
recognition.interimResults = true;
// Function to start recognition
const startRecognition = () => {
try {
recognition.start();
status.textContent = 'Listening...';
startButton.disabled = true;
stopButton.disabled = false;
} catch (e) {
console.error(e);
status.textContent = 'Error: ' + e.message;
}
};
// Auto-start on load
window.addEventListener('load', () => {
setTimeout(startRecognition, 1000);
});
startButton.onclick = startRecognition;
stopButton.onclick = () => {
recognition.stop();
status.textContent = 'Stopped';
startButton.disabled = false;
stopButton.disabled = true;
};
clearButton.onclick = () => {
fullTranscript = '';
output.textContent = '';
window.parent.postMessage({
type: 'clear_transcript',
}, '*');
};
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + '\\n';
} else {
interimTranscript += transcript;
}
}
if (finalTranscript || (Date.now() - lastUpdateTime > 5000)) {
if (finalTranscript) {
fullTranscript += finalTranscript;
// Send to Streamlit
window.parent.postMessage({
type: 'final_transcript',
text: finalTranscript
}, '*');
}
lastUpdateTime = Date.now();
}
output.textContent = fullTranscript + (interimTranscript ? '... ' + interimTranscript : '');
output.scrollTop = output.scrollHeight;
};
recognition.onend = () => {
if (!stopButton.disabled) {
try {
recognition.start();
console.log('Restarted recognition');
} catch (e) {
console.error('Failed to restart recognition:', e);
status.textContent = 'Error restarting: ' + e.message;
startButton.disabled = false;
stopButton.disabled = true;
}
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
if (event.error === 'not-allowed' || event.error === 'service-not-allowed') {
startButton.disabled = false;
stopButton.disabled = true;
}
};
}
</script>
</body>
</html>
"""
# Helper Functions
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# File Management Functions
def load_file(file_name):
"""Load file content."""
with open(file_name, "r", encoding='utf-8') as file:
content = file.read()
return content
def create_zip_of_files(files):
"""Create zip archive of files."""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_download_link(file):
"""Create download link for file."""
with open(file, "rb") as f:
contents = f.read()
b64 = base64.b64encode(contents).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}📂</a>'
def display_file_manager():
"""Display file management sidebar."""
st.sidebar.title("📁 File Management")
all_files = glob.glob("*.md")
all_files.sort(reverse=True)
if st.sidebar.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
if st.sidebar.button("⬇️ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)
for file in all_files:
col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("🌐", key="view_"+file):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("📂", key="edit_"+file):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col4:
if st.button("🗑", key="delete_"+file):
os.remove(file)
st.rerun()
def create_media_gallery():
"""Create the media gallery interface."""
st.header("🎬 Media Gallery")
tabs = st.tabs(["🖼️ Images", "🎵 Audio", "🎥 Video"])
with tabs[0]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
num_cols = st.slider("Number of columns", 1, 5, 3)
cols = st.columns(num_cols)
for idx, image_file in enumerate(image_files):
with cols[idx % num_cols]:
img = Image.open(image_file)
st.image(img, use_container_width=True)
# Add GPT vision analysis option
if st.button(f"Analyze {os.path.basename(image_file)}"):
analysis = process_image(image_file,
"Describe this image in detail and identify key elements.")
st.markdown(analysis)
with tabs[1]:
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
for audio_file in audio_files:
with st.expander(f"🎵 {os.path.basename(audio_file)}"):
st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(audio_file)}"):
with open(audio_file, "rb") as f:
transcription = process_audio(f)
st.write(transcription)
with tabs[2]:
video_files = glob.glob("*.mp4")
for video_file in video_files:
with st.expander(f"🎥 {os.path.basename(video_file)}"):
st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(video_file)}"):
analysis = process_video_with_gpt(video_file,
"Describe what's happening in this video.")
st.markdown(analysis)
def get_media_html(media_path, media_type="video", width="100%"):
"""Generate HTML for media player."""
media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
if media_type == "video":
return f'''
<video width="{width}" controls autoplay muted loop>
<source src="data:video/mp4;base64,{media_data}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
else: # audio
return f'''
<audio controls style="width: {width};">
<source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
'''
@st.cache_resource
def set_transcript(text):
"""Set transcript in session state."""
st.session_state.voice_transcript = text
def main():
st.sidebar.markdown("### 🚲BikeAI🏆 Claude and GPT Multi-Agent Research AI")
# Main navigation
tab_main = st.radio("Choose Action:",
["🎤 Voice Input", "💬 Chat", "📸 Media Gallery", "🔍 Search ArXiv", "📝 File Editor"],
horizontal=True)
if tab_main == "🎤 Voice Input":
st.subheader("Voice Recognition")
# Display speech recognition component
speech_component = st.components.v1.html(speech_recognition_html, height=400)
#Experiment: Use `st.session_state` to store the transcript
# Listen to messages from the HTML component
components.html("""
<script>
window.addEventListener('message', (event) => {
if (event.data.type === 'final_transcript') {
const transcript = event.data.text;
Streamlit.setComponentValue(transcript);
}
});
</script>
""", height=0)
if 'voice_transcript' not in st.session_state:
st.session_state.voice_transcript = ""
# Check for updates to transcript
if st.session_state.voice_transcript:
st.markdown("### Processed Voice Input:")
st.text_area("Voice Transcript", st.session_state.voice_transcript, height=100)
# Buttons to process the transcript
if st.button("Search with GPT"):
st.subheader("GPT-4o Response")
gpt_response = process_with_gpt(st.session_state.voice_transcript)
st.markdown(gpt_response)
if st.button("Search with Claude"):
st.subheader("Claude Response")
claude_response = process_with_claude(st.session_state.voice_transcript)
st.markdown(claude_response)
if st.button("Search ArXiv"):
st.subheader("ArXiv Search Results")
arxiv_results = perform_ai_lookup(st.session_state.voice_transcript)
st.markdown(arxiv_results)
# Clear transcript button
if st.button("Clear Transcript"):
st.session_state.voice_transcript = ""
# Handle speech recognition output
if speech_component:
try:
data = speech_component
if isinstance(data, dict):
if data.get('type') == 'final_transcript':
text = data.get('text', '').strip()
if text:
st.session_state.last_voice_input = text
# Process voice input with AI
st.subheader("AI Response to Voice Input:")
col1, col2, col3 = st.columns(3)
with col2:
st.write("Claude-3.5 Sonnet:")
try:
claude_response = process_with_claude(text)
except:
st.write('Claude 3.5 Sonnet out of tokens.')
with col1:
st.write("GPT-4o Omni:")
try:
gpt_response = process_with_gpt(text)
except:
st.write('GPT 4o out of tokens')
with col3:
st.write("Arxiv and Mistral Research:")
with st.spinner("Searching ArXiv..."):
results = perform_ai_lookup(text)
st.markdown(results)
elif data.get('type') == 'clear_transcript':
st.session_state.last_voice_input = ""
st.experimental_rerun()
except Exception as e:
st.error(f"Error processing voice input: {e}")
# Display last voice input
if st.session_state.last_voice_input:
st.text_area("Last Voice Input:", st.session_state.last_voice_input, height=100)
if tab_main == "💬 Chat":
# Model Selection
model_choice = st.sidebar.radio(
"Choose AI Model:",
["GPT-4o", "Claude-3", "GPT+Claude+Arxiv"]
)
# Chat Interface
user_input = st.text_area("Message:", height=100)
if st.button("Send 📨"):
if user_input:
if model_choice == "GPT-4o":
gpt_response = process_with_gpt(user_input)
elif model_choice == "Claude-3":
claude_response = process_with_claude(user_input)
else: # Both
col1, col2, col3 = st.columns(3)
with col2:
st.subheader("Claude-3.5 Sonnet:")
try:
claude_response = process_with_claude(user_input)
except:
st.write('Claude 3.5 Sonnet out of tokens.')
with col1:
st.subheader("GPT-4o Omni:")
try:
gpt_response = process_with_gpt(user_input)
except:
st.write('GPT 4o out of tokens')
with col3:
st.subheader("Arxiv and Mistral Research:")
with st.spinner("Searching ArXiv..."):
#results = search_arxiv(user_input)
results = perform_ai_lookup(user_input)
st.markdown(results)
# Display Chat History
st.subheader("Chat History 📜")
tab1, tab2 = st.tabs(["Claude History", "GPT-4o History"])
with tab1:
for chat in st.session_state.chat_history:
st.text_area("You:", chat["user"], height=100)
st.text_area("Claude:", chat["claude"], height=200)
st.markdown(chat["claude"])
with tab2:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
elif tab_main == "📸 Media Gallery":
create_media_gallery()
elif tab_main == "🔍 Search ArXiv":
query = st.text_input("Enter your research query:")
if query:
with st.spinner("Searching ArXiv..."):
results = search_arxiv(query)
st.markdown(results)
elif tab_main == "📝 File Editor":
if hasattr(st.session_state, 'current_file'):
st.subheader(f"Editing: {st.session_state.current_file}")
new_content = st.text_area("Content:", st.session_state.file_content, height=300)
if st.button("Save Changes"):
with open(st.session_state.current_file, 'w', encoding='utf-8') as file:
file.write(new_content)
st.success("File updated successfully!")
# Always show file manager in sidebar
display_file_manager()
if __name__ == "__main__":
main()