RescuerOfStolenBikes / backup15.voiceinoutworks.app.py
awacke1's picture
Update backup15.voiceinoutworks.app.py
896b813 verified
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts # ensure this is installed (pip install edge-tts)
# πŸ”§ Config & Setup
st.set_page_config(
page_title="🚲BikeAIπŸ† Claude/GPT Research",
page_icon="πŸš²πŸ†",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "🚲BikeAIπŸ† Claude/GPT Research AI"
}
)
load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY') or st.secrets['OPENAI_API_KEY']
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3") or st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
st.session_state.setdefault('transcript_history', [])
st.session_state.setdefault('chat_history', [])
st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13")
st.session_state.setdefault('messages', [])
st.session_state.setdefault('last_voice_input', "")
# 🎨 Minimal Custom CSS
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
</style>
""", unsafe_allow_html=True)
# πŸ”‘ Common Utilities
def generate_filename(prompt, file_type="md"):
ctz = pytz.timezone('US/Central')
date_str = datetime.now(ctz).strftime("%m%d_%H%M")
safe = re.sub(r'[<>:"/\\\\|?*\n]', ' ', prompt)
safe = re.sub(r'\s+', ' ', safe).strip()[:90]
return f"{date_str}_{safe}.{file_type}"
def create_file(filename, prompt, response):
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
def get_download_link(file):
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">πŸ“‚ Download {os.path.basename(file)}</a>'
@st.cache_resource
def speech_synthesis_html(result):
# This old function can remain as a fallback, but we won't use it after integrating EdgeTTS.
html_code = f"""
<html><body>
<script>
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
window.speechSynthesis.speak(msg);
</script>
</body></html>
"""
components.html(html_code, height=0)
#------------add EdgeTTS
# --- NEW FUNCTIONS FOR EDGE TTS ---
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""
Generate audio from text using Edge TTS and return the path to the MP3 file.
"""
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text,"mp3")
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""
Synchronous wrapper to call the async TTS generation and return the file path.
"""
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
"""
Display an audio player and a download link for the generated MP3 file.
"""
if file_path and os.path.exists(file_path):
st.audio(file_path)
st.markdown(get_download_link(file_path), unsafe_allow_html=True)
#---------------------------
def process_image(image_path, user_prompt):
with open(image_path, "rb") as imgf:
image_data = imgf.read()
b64img = base64.b64encode(image_data).decode("utf-8")
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
]}
],
temperature=0.0,
)
return resp.choices[0].message.content
def process_audio(audio_path):
with open(audio_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
st.session_state.messages.append({"role": "user", "content": transcription.text})
return transcription.text
def process_video(video_path, seconds_per_frame=1):
vid = cv2.VideoCapture(video_path)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vid.get(cv2.CAP_PROP_FPS)
skip = int(fps*seconds_per_frame)
frames_b64 = []
for i in range(0, total, skip):
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = vid.read()
if not ret: break
_, buf = cv2.imencode(".jpg", frame)
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
vid.release()
return frames_b64
def process_video_with_gpt(video_path, prompt):
frames = process_video(video_path)
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role":"system","content":"Analyze video frames."},
{"role":"user","content":[
{"type":"text","text":prompt},
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
]}
]
)
return resp.choices[0].message.content
def search_arxiv(query):
st.write("πŸ” Searching ArXiv...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm")
st.markdown("### Mistral-8x7B-Instruct-v0.1 Result")
st.markdown(r1)
r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm")
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(r2)
return f"{r1}\n\n{r2}"
def perform_ai_lookup(q):
start = time.time()
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
# Perform a RAG-based search
r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
refs = r[0]
# Ask model for answer
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}"
#---------------------------------------------------------------
# Speak results
#speech_synthesis_html(r2)
# Instead of speech_synthesis_html, use EdgeTTS now:
st.markdown(result)
# Speak main result
audio_file_main = speak_with_edge_tts(r2, voice="en-US-AriaNeural", rate=0, pitch=0)
st.write("### Audio Output for Main Result")
play_and_download_audio(audio_file_main)
# Speak references summaries
summaries_text = "Here are the summaries from the references: " + refs.replace('"','')
audio_file_refs = speak_with_edge_tts(summaries_text, voice="en-US-AriaNeural", rate=0, pitch=0)
st.write("### Audio Output for References Summaries")
play_and_download_audio(audio_file_refs)
# Extract titles from refs and speak them
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Here are the titles of the papers: " + ", ".join(titles)
audio_file_titles = speak_with_edge_tts(titles_text, voice="en-US-AriaNeural", rate=0, pitch=0)
st.write("### Audio Output for Paper Titles")
play_and_download_audio(audio_file_titles)
# --------------------------------------------
st.markdown(result)
elapsed = time.time()-start
st.write(f"Elapsed: {elapsed:.2f} s")
fn = generate_filename(q,"md")
create_file(fn,q,result)
return result
def process_with_gpt(text):
if not text: return
st.session_state.messages.append({"role":"user","content":text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
c = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages,
stream=False
)
ans = c.choices[0].message.content
st.write("GPT-4o: " + ans)
create_file(generate_filename(text,"md"),text,ans)
st.session_state.messages.append({"role":"assistant","content":ans})
return ans
def process_with_claude(text):
if not text: return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
r = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role":"user","content":text}]
)
ans = r.content[0].text
st.write("Claude: " + ans)
create_file(generate_filename(text,"md"),text,ans)
st.session_state.chat_history.append({"user":text,"claude":ans})
return ans
def create_zip_of_files(files):
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in files: z.write(f)
return zip_name
def get_media_html(p,typ="video",w="100%"):
d = base64.b64encode(open(p,'rb').read()).decode()
if typ=="video":
return f'<video width="{w}" controls autoplay muted loop><source src="data:video/mp4;base64,{d}" type="video/mp4"></video>'
else:
return f'<audio controls style="width:{w};"><source src="data:audio/mpeg;base64,{d}" type="audio/mpeg"></audio>'
def create_media_gallery():
st.header("🎬 Media Gallery")
tabs = st.tabs(["πŸ–ΌοΈ Images", "🎡 Audio", "πŸŽ₯ Video"])
with tabs[0]:
imgs = glob.glob("*.png")+glob.glob("*.jpg")
if imgs:
c = st.slider("Cols",1,5,3)
cols = st.columns(c)
for i,f in enumerate(imgs):
with cols[i%c]:
st.image(Image.open(f),use_container_width=True)
if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}"):
a = process_image(f,"Describe this image.")
st.markdown(a)
with tabs[1]:
auds = glob.glob("*.mp3")+glob.glob("*.wav")
for a in auds:
with st.expander(f"🎡 {os.path.basename(a)}"):
st.markdown(get_media_html(a,"audio"),unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(a)}"):
t = process_audio(a)
st.write(t)
with tabs[2]:
vids = glob.glob("*.mp4")
for v in vids:
with st.expander(f"πŸŽ₯ {os.path.basename(v)}"):
st.markdown(get_media_html(v,"video"),unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(v)}"):
a = process_video_with_gpt(v,"Describe video.")
st.markdown(a)
def display_file_manager():
st.sidebar.title("πŸ“ File Management")
files = sorted(glob.glob("*.md"),reverse=True)
if st.sidebar.button("πŸ—‘ Delete All"):
for f in files: os.remove(f)
st.rerun()
if st.sidebar.button("⬇️ Download All"):
z= create_zip_of_files(files)
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for f in files:
col1,col2,col3,col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("🌐",key="v"+f):
st.session_state.current_file=f
c=open(f,'r',encoding='utf-8').read()
st.write(c)
with col2:
st.markdown(get_download_link(f),unsafe_allow_html=True)
with col3:
if st.button("πŸ“‚",key="e"+f):
st.session_state.current_file=f
st.session_state.file_content=open(f,'r',encoding='utf-8').read()
with col4:
if st.button("πŸ—‘",key="d"+f):
os.remove(f)
st.experimental_rerun()
def main():
st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI")
tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True)
model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0)
# Declare the component
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello")
if val:
# Strip whitespace and newlines from the end of the user input
user_input = val.strip()
if user_input:
if model_choice == "GPT-4o":
process_with_gpt(user_input)
elif model_choice == "Claude-3":
process_with_claude(user_input)
elif model_choice == "Arxiv":
st.subheader("Arxiv Only Results:")
perform_ai_lookup(user_input)
else:
col1,col2,col3=st.columns(3)
with col1:
st.subheader("GPT-4o Omni:")
try: process_with_gpt(user_input)
except: st.write('GPT 4o error')
with col2:
st.subheader("Claude-3 Sonnet:")
try: process_with_claude(user_input)
except: st.write('Claude error')
with col3:
st.subheader("Arxiv + Mistral:")
try:
r = perform_ai_lookup(user_input)
st.markdown(r)
except:
st.write("Arxiv error")
if tab_main == "🎀 Voice Input":
st.subheader("🎀 Voice Recognition")
user_text = st.text_area("Message:", height=100)
# Strip whitespace and newlines
user_text = user_text.strip()
if st.button("Send πŸ“¨"):
if user_text:
if model_choice == "GPT-4o":
process_with_gpt(user_text)
elif model_choice == "Claude-3":
process_with_claude(user_text)
elif model_choice == "Arxiv":
st.subheader("Arxiv Only Results:")
perform_ai_lookup(user_text)
else:
col1,col2,col3=st.columns(3)
with col1:
st.subheader("GPT-4o Omni:")
process_with_gpt(user_text)
with col2:
st.subheader("Claude-3 Sonnet:")
process_with_claude(user_text)
with col3:
st.subheader("Arxiv & Mistral:")
res = perform_ai_lookup(user_text)
st.markdown(res)
st.subheader("πŸ“œ Chat History")
t1,t2=st.tabs(["Claude History","GPT-4o History"])
with t1:
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Claude:**", c["claude"])
with t2:
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
elif tab_main == "πŸ“Έ Media Gallery":
create_media_gallery()
elif tab_main == "πŸ” Search ArXiv":
q=st.text_input("Research query:")
if q:
q = q.strip() # Strip whitespace and newlines
if q:
r=search_arxiv(q)
st.markdown(r)
elif tab_main == "πŸ“ File Editor":
if getattr(st.session_state,'current_file',None):
st.subheader(f"Editing: {st.session_state.current_file}")
new_text = st.text_area("Content:", st.session_state.file_content, height=300)
# Here also you can strip if needed, but usually for file editing you might not want to.
if st.button("Save"):
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
f.write(new_text)
st.success("Updated!")
display_file_manager()
if __name__=="__main__":
main()