Spaces:
Running
Running
File size: 36,362 Bytes
8edf8d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 |
import streamlit as st
import anthropic
import openai
import base64
from datetime import datetime
import plotly.graph_objects as go
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit.components.v1 as components
import textract
import time
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
# 1. π²BikeAIπ Configuration and Setup
Site_Name = 'π²BikeAIπ Claude and GPT Multi-Agent Research AI'
title = "π²BikeAIπ Claude and GPT Multi-Agent Research AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = 'π²π'
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# 2. π²BikeAIπ Load environment variables and initialize clients
load_dotenv()
# OpenAI setup
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None:
openai.api_key = st.secrets['OPENAI_API_KEY']
openai_client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY'),
organization=os.getenv('OPENAI_ORG_ID')
)
# 3.π²BikeAIπ Claude setup
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3")
if anthropic_key == None:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# 4.π²BikeAIπ Initialize session states
if 'transcript_history' not in st.session_state:
st.session_state.transcript_history = []
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-4o-2024-05-13"
if "messages" not in st.session_state:
st.session_state.messages = []
if 'last_voice_input' not in st.session_state:
st.session_state.last_voice_input = ""
# 5. π²BikeAIπ HuggingFace AI setup
API_URL = os.getenv('API_URL')
HF_KEY = os.getenv('HF_KEY')
MODEL1 = "meta-llama/Llama-2-7b-chat-hf"
MODEL2 = "openai/whisper-small.en"
headers = {
"Authorization": f"Bearer {HF_KEY}",
"Content-Type": "application/json"
}
# 6. π²BikeAIπ Custom CSS
st.markdown("""
<style>
.main {
background: linear-gradient(to right, #1a1a1a, #2d2d2d);
color: #ffffff;
}
.stMarkdown {
font-family: 'Helvetica Neue', sans-serif;
}
.category-header {
background: linear-gradient(45deg, #2b5876, #4e4376);
padding: 20px;
border-radius: 10px;
margin: 10px 0;
}
.scene-card {
background: rgba(0,0,0,0.3);
padding: 15px;
border-radius: 8px;
margin: 10px 0;
border: 1px solid rgba(255,255,255,0.1);
}
.media-gallery {
display: grid;
gap: 1rem;
padding: 1rem;
}
.bike-card {
background: rgba(255,255,255,0.05);
border-radius: 10px;
padding: 15px;
transition: transform 0.3s;
}
.bike-card:hover {
transform: scale(1.02);
}
</style>
""", unsafe_allow_html=True)
# 7. Helper Functions
def generate_filename(prompt, file_type):
"""Generate a safe filename using the prompt and file type."""
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# 8. Function to create and save a file (and avoid the black hole of lost data π³)
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
with open(filename, 'w', encoding='utf-8') as file:
file.write(prompt + "\n\n" + response)
def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
"""Create and save file with proper handling of different types."""
if not should_save:
return None
filename = generate_filename(prompt if prompt else content, file_type)
with open(filename, "w", encoding="utf-8") as f:
if is_image:
f.write(content)
else:
f.write(prompt + "\n\n" + content if prompt else content)
return filename
def get_download_link(file_path):
"""Create download link for file."""
with open(file_path, "rb") as file:
contents = file.read()
b64 = base64.b64encode(contents).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}π</a>'
@st.cache_resource
def SpeechSynthesis(result):
"""HTML5 Speech Synthesis."""
documentHTML5 = f'''
<!DOCTYPE html>
<html>
<head>
<title>Read It Aloud</title>
<script type="text/javascript">
function readAloud() {{
const text = document.getElementById("textArea").value;
const speech = new SpeechSynthesisUtterance(text);
window.speechSynthesis.speak(speech);
}}
</script>
</head>
<body>
<h1>π Read It Aloud</h1>
<textarea id="textArea" rows="10" cols="80">{result}</textarea>
<br>
<button onclick="readAloud()">π Read Aloud</button>
</body>
</html>
'''
components.html(documentHTML5, width=1280, height=300)
# Media Processing Functions
def process_image(image_input, user_prompt):
"""Process image with GPT-4o vision."""
if isinstance(image_input, str):
with open(image_input, "rb") as image_file:
image_input = image_file.read()
base64_image = base64.b64encode(image_input).decode("utf-8")
response = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {
"url": f"data:image/png;base64,{base64_image}"
}}
]}
],
temperature=0.0,
)
return response.choices[0].message.content
def process_audio(audio_input, text_input=''):
"""Process audio with Whisper and GPT."""
if isinstance(audio_input, str):
with open(audio_input, "rb") as file:
audio_input = file.read()
transcription = openai_client.audio.transcriptions.create(
model="whisper-1",
file=audio_input,
)
st.session_state.messages.append({"role": "user", "content": transcription.text})
with st.chat_message("assistant"):
st.markdown(transcription.text)
SpeechSynthesis(transcription.text)
filename = generate_filename(transcription.text, "wav")
create_and_save_file(audio_input, "wav", transcription.text, True)
# Modified video processing function without moviepy dependency
def process_video(video_path, seconds_per_frame=1):
"""Process video files for frame extraction."""
base64Frames = []
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
for frame_idx in range(0, total_frames, frames_to_skip):
video.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
video.release()
return base64Frames, None
def process_video_with_gpt(video_input, user_prompt):
"""Process video with GPT-4 vision."""
base64Frames, _ = process_video(video_input)
response = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "Analyze the video frames and provide a detailed description."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
*[{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{frame}"}}
for frame in base64Frames]
]}
]
)
return response.choices[0].message.content
def extract_urls(text):
try:
date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})')
abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)')
pdf_link_pattern = re.compile(r'\[β¬οΈ\]\((https://arxiv\.org/pdf/\d+\.\d+)\)')
title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]')
date_matches = date_pattern.findall(text)
abs_link_matches = abs_link_pattern.findall(text)
pdf_link_matches = pdf_link_pattern.findall(text)
title_matches = title_pattern.findall(text)
# markdown with the extracted fields
markdown_text = ""
for i in range(len(date_matches)):
date = date_matches[i]
title = title_matches[i]
abs_link = abs_link_matches[i][1]
pdf_link = pdf_link_matches[i]
markdown_text += f"**Date:** {date}\n\n"
markdown_text += f"**Title:** {title}\n\n"
markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n"
markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n"
markdown_text += "---\n\n"
return markdown_text
except:
st.write('.')
return ''
def search_arxiv(query):
st.write("Performing AI Lookup...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
result1 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
st.markdown(result1)
result2 = client.predict(
prompt=query,
llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
stream_outputs=True,
api_name="/ask_llm"
)
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(result2)
combined_result = f"{result1}\n\n{result2}"
return combined_result
#return responseall
# Function to generate a filename based on prompt and time (because names matter π)
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
safe_prompt = re.sub(r'\W+', '_', prompt)[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# Function to create and save a file (and avoid the black hole of lost data π³)
def create_file(filename, prompt, response):
with open(filename, 'w', encoding='utf-8') as file:
file.write(prompt + "\n\n" + response)
def perform_ai_lookup(query):
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
response1 = client.predict(
query,
20,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
Question = '### π ' + query + '\r\n' # Format for markdown display with links
References = response1[0]
ReferenceLinks = extract_urls(References)
RunSecondQuery = True
results=''
if RunSecondQuery:
# Search 2 - Retrieve the Summary with Papers Context and Original Query
response2 = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
if len(response2) > 10:
Answer = response2
SpeechSynthesis(Answer)
# Restructure results to follow format of Question, Answer, References, ReferenceLinks
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
st.markdown(results)
st.write('πRun of Multi-Agent System Paper Summary Spec is Complete')
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
filename = generate_filename(query, "md")
create_file(filename, query, results)
return results
# Chat Processing Functions
def process_with_gpt(text_input):
"""Process text with GPT-4o."""
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
completion = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=False
)
return_text = completion.choices[0].message.content
st.write("GPT-4o: " + return_text)
#filename = generate_filename(text_input, "md")
filename = generate_filename("GPT-4o: " + return_text, "md")
create_file(filename, text_input, return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
return return_text
def process_with_claude(text_input):
"""Process text with Claude."""
if text_input:
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
response = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": text_input}
]
)
response_text = response.content[0].text
st.write("Claude: " + response_text)
#filename = generate_filename(text_input, "md")
filename = generate_filename("Claude: " + response_text, "md")
create_file(filename, text_input, response_text)
st.session_state.chat_history.append({
"user": text_input,
"claude": response_text
})
return response_text
# File Management Functions
def load_file(file_name):
"""Load file content."""
with open(file_name, "r", encoding='utf-8') as file:
content = file.read()
return content
def create_zip_of_files(files):
"""Create zip archive of files."""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_media_html(media_path, media_type="video", width="100%"):
"""Generate HTML for media player."""
media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
if media_type == "video":
return f'''
<video width="{width}" controls autoplay muted loop>
<source src="data:video/mp4;base64,{media_data}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
else: # audio
return f'''
<audio controls style="width: {width};">
<source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
'''
def create_media_gallery():
"""Create the media gallery interface."""
st.header("π¬ Media Gallery")
tabs = st.tabs(["πΌοΈ Images", "π΅ Audio", "π₯ Video"])
with tabs[0]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
num_cols = st.slider("Number of columns", 1, 5, 3)
cols = st.columns(num_cols)
for idx, image_file in enumerate(image_files):
with cols[idx % num_cols]:
img = Image.open(image_file)
st.image(img, use_container_width=True)
# Add GPT vision analysis option
if st.button(f"Analyze {os.path.basename(image_file)}"):
analysis = process_image(image_file,
"Describe this image in detail and identify key elements.")
st.markdown(analysis)
with tabs[1]:
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
for audio_file in audio_files:
with st.expander(f"π΅ {os.path.basename(audio_file)}"):
st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(audio_file)}"):
with open(audio_file, "rb") as f:
transcription = process_audio(f)
st.write(transcription)
with tabs[2]:
video_files = glob.glob("*.mp4")
for video_file in video_files:
with st.expander(f"π₯ {os.path.basename(video_file)}"):
st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(video_file)}"):
analysis = process_video_with_gpt(video_file,
"Describe what's happening in this video.")
st.markdown(analysis)
def display_file_manager():
"""Display file management sidebar with guaranteed unique button keys."""
st.sidebar.title("π File Management")
all_files = glob.glob("*.md")
all_files.sort(reverse=True)
if st.sidebar.button("π Delete All", key="delete_all_files_button"):
for file in all_files:
os.remove(file)
st.rerun()
if st.sidebar.button("β¬οΈ Download All", key="download_all_files_button"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)
# Create unique keys using file attributes
for idx, file in enumerate(all_files):
# Get file stats for unique identification
file_stat = os.stat(file)
unique_id = f"{idx}_{file_stat.st_size}_{file_stat.st_mtime}"
col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("π", key=f"view_{unique_id}"):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("π", key=f"edit_{unique_id}"):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col4:
if st.button("π", key=f"delete_{unique_id}"):
os.remove(file)
st.rerun()
# Speech Recognition HTML Component
speech_recognition_html = """
<!DOCTYPE html>
<html>
<head>
<title>Continuous Speech Demo</title>
<style>
body {
font-family: sans-serif;
padding: 20px;
max-width: 800px;
margin: 0 auto;
}
button {
padding: 10px 20px;
margin: 10px 5px;
font-size: 16px;
}
#status {
margin: 10px 0;
padding: 10px;
background: #e8f5e9;
border-radius: 4px;
}
#output {
white-space: pre-wrap;
padding: 15px;
background: #f5f5f5;
border-radius: 4px;
margin: 10px 0;
min-height: 100px;
max-height: 400px;
overflow-y: auto;
}
.controls {
margin: 10px 0;
}
</style>
</head>
<body>
<div class="controls">
<button id="start">Start Listening</button>
<button id="stop" disabled>Stop Listening</button>
<button id="clear">Clear Text</button>
</div>
<div id="status">Ready</div>
<div id="output"></div>
<!-- Add the hidden input here -->
<input type="hidden" id="streamlit-data" value="">
<script>
if (!('webkitSpeechRecognition' in window)) {
alert('Speech recognition not supported');
} else {
const recognition = new webkitSpeechRecognition();
const startButton = document.getElementById('start');
const stopButton = document.getElementById('stop');
const clearButton = document.getElementById('clear');
const status = document.getElementById('status');
const output = document.getElementById('output');
let fullTranscript = '';
let lastUpdateTime = Date.now();
// Configure recognition
recognition.continuous = true;
recognition.interimResults = true;
// Function to start recognition
const startRecognition = () => {
try {
recognition.start();
status.textContent = 'Listening...';
startButton.disabled = true;
stopButton.disabled = false;
} catch (e) {
console.error(e);
status.textContent = 'Error: ' + e.message;
}
};
// Auto-start on load
window.addEventListener('load', () => {
setTimeout(startRecognition, 1000);
});
startButton.onclick = startRecognition;
stopButton.onclick = () => {
recognition.stop();
status.textContent = 'Stopped';
startButton.disabled = false;
stopButton.disabled = true;
};
clearButton.onclick = () => {
fullTranscript = '';
output.textContent = '';
window.parent.postMessage({
type: 'clear_transcript',
}, '*');
};
recognition.onresult = (event) => {
let interimTranscript = '';
let finalTranscript = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
const transcript = event.results[i][0].transcript;
if (event.results[i].isFinal) {
finalTranscript += transcript + '\\n';
} else {
interimTranscript += transcript;
}
}
if (finalTranscript || (Date.now() - lastUpdateTime > 5000)) {
if (finalTranscript) {
fullTranscript += finalTranscript;
// Update the hidden input value
document.getElementById('streamlit-data').value = fullTranscript;
}
lastUpdateTime = Date.now();
}
output.textContent = fullTranscript + (interimTranscript ? '... ' + interimTranscript : '');
output.scrollTop = output.scrollHeight;
document.getElementById('streamlit-data').value = fullTranscript;
};
recognition.onend = () => {
if (!stopButton.disabled) {
try {
recognition.start();
console.log('Restarted recognition');
} catch (e) {
console.error('Failed to restart recognition:', e);
status.textContent = 'Error restarting: ' + e.message;
startButton.disabled = false;
stopButton.disabled = true;
}
}
};
recognition.onerror = (event) => {
console.error('Recognition error:', event.error);
status.textContent = 'Error: ' + event.error;
if (event.error === 'not-allowed' || event.error === 'service-not-allowed') {
startButton.disabled = false;
stopButton.disabled = true;
}
};
}
</script>
</body>
</html>
"""
# Helper Functions
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# File Management Functions
def load_file(file_name):
"""Load file content."""
with open(file_name, "r", encoding='utf-8') as file:
content = file.read()
return content
def create_zip_of_files(files):
"""Create zip archive of files."""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_download_link(file):
"""Create download link for file."""
with open(file, "rb") as f:
contents = f.read()
b64 = base64.b64encode(contents).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}π</a>'
def display_file_manager():
"""Display file management sidebar."""
st.sidebar.title("π File Management")
all_files = glob.glob("*.md")
all_files.sort(reverse=True)
if st.sidebar.button("π Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
if st.sidebar.button("β¬οΈ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)
for file in all_files:
col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("π", key="view_"+file):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("π", key="edit_"+file):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col4:
if st.button("π", key="delete_"+file):
os.remove(file)
st.rerun()
def create_media_gallery():
"""Create the media gallery interface."""
st.header("π¬ Media Gallery")
tabs = st.tabs(["πΌοΈ Images", "π΅ Audio", "π₯ Video"])
with tabs[0]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
num_cols = st.slider("Number of columns", 1, 5, 3)
cols = st.columns(num_cols)
for idx, image_file in enumerate(image_files):
with cols[idx % num_cols]:
img = Image.open(image_file)
st.image(img, use_container_width=True)
# Add GPT vision analysis option
if st.button(f"Analyze {os.path.basename(image_file)}"):
analysis = process_image(image_file,
"Describe this image in detail and identify key elements.")
st.markdown(analysis)
with tabs[1]:
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
for audio_file in audio_files:
with st.expander(f"π΅ {os.path.basename(audio_file)}"):
st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(audio_file)}"):
with open(audio_file, "rb") as f:
transcription = process_audio(f)
st.write(transcription)
with tabs[2]:
video_files = glob.glob("*.mp4")
for video_file in video_files:
with st.expander(f"π₯ {os.path.basename(video_file)}"):
st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(video_file)}"):
analysis = process_video_with_gpt(video_file,
"Describe what's happening in this video.")
st.markdown(analysis)
def get_media_html(media_path, media_type="video", width="100%"):
"""Generate HTML for media player."""
media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
if media_type == "video":
return f'''
<video width="{width}" controls autoplay muted loop>
<source src="data:video/mp4;base64,{media_data}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
else: # audio
return f'''
<audio controls style="width: {width};">
<source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
'''
@st.cache_resource
def set_transcript(text):
"""Set transcript in session state."""
st.session_state.voice_transcript = text
def main():
st.sidebar.markdown("### π²BikeAIπ Claude and GPT Multi-Agent Research AI")
# Main navigation
tab_main = st.radio("Choose Action:",
["π€ Voice Input", "π¬ Chat", "πΈ Media Gallery", "π Search ArXiv", "π File Editor"],
horizontal=True)
if tab_main == "π€ Voice Input":
st.subheader("Voice Recognition")
# Initialize session state for the transcript
if 'voice_transcript' not in st.session_state:
st.session_state.voice_transcript = ""
# Display speech recognition component and capture returned value
transcript = st.components.v1.html(speech_recognition_html, height=400)
# Update session state if there's new data
if transcript is not None and transcript != "":
st.session_state.voice_transcript = transcript
# Display the transcript in a Streamlit text area
st.markdown("### Processed Voice Input:")
st.text_area("Voice Transcript", st.session_state.voice_transcript, height=100)
# Add functionality to process the transcript
if st.button("Process Transcript"):
st.subheader("AI Response to Transcript")
gpt_response = process_with_gpt(st.session_state.voice_transcript)
st.markdown(gpt_response)
# Option to clear the transcript
if st.button("Clear Transcript"):
st.session_state.voice_transcript = ""
st.rerun()
# Buttons to process the transcript
if st.button("Search with GPT"):
st.subheader("GPT-4o Response")
gpt_response = process_with_gpt(st.session_state.voice_transcript)
st.markdown(gpt_response)
if st.button("Search with Claude"):
st.subheader("Claude Response")
claude_response = process_with_claude(st.session_state.voice_transcript)
st.markdown(claude_response)
if st.button("Search ArXiv"):
st.subheader("ArXiv Search Results")
arxiv_results = perform_ai_lookup(st.session_state.voice_transcript)
st.markdown(arxiv_results)
# Display last voice input
if st.session_state.last_voice_input:
st.text_area("Last Voice Input:", st.session_state.last_voice_input, height=100)
if tab_main == "π¬ Chat":
# Model Selection
model_choice = st.sidebar.radio(
"Choose AI Model:",
["GPT-4o", "Claude-3", "GPT+Claude+Arxiv"]
)
# Chat Interface
user_input = st.text_area("Message:", height=100)
if st.button("Send π¨"):
if user_input:
if model_choice == "GPT-4o":
gpt_response = process_with_gpt(user_input)
elif model_choice == "Claude-3":
claude_response = process_with_claude(user_input)
else: # Both
col1, col2, col3 = st.columns(3)
with col2:
st.subheader("Claude-3.5 Sonnet:")
try:
claude_response = process_with_claude(user_input)
except:
st.write('Claude 3.5 Sonnet out of tokens.')
with col1:
st.subheader("GPT-4o Omni:")
try:
gpt_response = process_with_gpt(user_input)
except:
st.write('GPT 4o out of tokens')
with col3:
st.subheader("Arxiv and Mistral Research:")
with st.spinner("Searching ArXiv..."):
#results = search_arxiv(user_input)
results = perform_ai_lookup(user_input)
st.markdown(results)
# Display Chat History
st.subheader("Chat History π")
tab1, tab2 = st.tabs(["Claude History", "GPT-4o History"])
with tab1:
for chat in st.session_state.chat_history:
st.text_area("You:", chat["user"], height=100)
st.text_area("Claude:", chat["claude"], height=200)
st.markdown(chat["claude"])
with tab2:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
elif tab_main == "πΈ Media Gallery":
create_media_gallery()
elif tab_main == "π Search ArXiv":
query = st.text_input("Enter your research query:")
if query:
with st.spinner("Searching ArXiv..."):
results = search_arxiv(query)
st.markdown(results)
elif tab_main == "π File Editor":
if hasattr(st.session_state, 'current_file'):
st.subheader(f"Editing: {st.session_state.current_file}")
new_content = st.text_area("Content:", st.session_state.file_content, height=300)
if st.button("Save Changes"):
with open(st.session_state.current_file, 'w', encoding='utf-8') as file:
file.write(new_content)
st.success("File updated successfully!")
# Always show file manager in sidebar
display_file_manager()
if __name__ == "__main__":
main() |