File size: 22,938 Bytes
e05ce15
d1c1759
e05ce15
ad2029b
d1c1759
e05ce15
 
5a4281c
e05ce15
 
 
 
 
 
 
 
 
 
 
4be1d74
5a4281c
e05ce15
d1c1759
e05ce15
d1c1759
 
e05ce15
 
 
d1c1759
 
 
e05ce15
 
 
58c05f2
 
 
 
 
 
 
 
 
e05ce15
d1c1759
7639607
d1c1759
e05ce15
5a4281c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58c05f2
 
5a4281c
 
e05ce15
d1c1759
e05ce15
 
d1c1759
 
5a4281c
 
 
e05ce15
 
 
5a4281c
 
 
 
 
58c05f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1c1759
 
58c05f2
7639607
d1c1759
 
 
5a4281c
e05ce15
 
d1c1759
 
 
 
 
 
 
 
 
 
 
4be1d74
58c05f2
4be1d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4281c
 
4be1d74
d1c1759
 
 
 
 
e05ce15
 
d1c1759
e05ce15
 
d1c1759
e05ce15
 
 
 
d1c1759
e05ce15
d1c1759
 
 
e05ce15
d1c1759
e05ce15
d1c1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e05ce15
 
d1c1759
 
 
 
e05ce15
 
 
d1c1759
e05ce15
 
d1c1759
e05ce15
d1c1759
 
 
 
e05ce15
d1c1759
 
e05ce15
18489bd
d1c1759
e05ce15
d1c1759
 
 
 
4be1d74
 
8e4132b
58c05f2
18489bd
58c05f2
 
18489bd
 
 
 
 
58c05f2
 
18489bd
 
 
 
 
 
 
 
 
 
 
58c05f2
 
18489bd
 
8e4132b
d1c1759
18489bd
58c05f2
 
d1c1759
 
 
 
 
 
 
 
 
 
 
 
e05ce15
d1c1759
 
58c05f2
d1c1759
5a4281c
d1c1759
 
 
 
 
 
 
 
 
 
 
 
 
58c05f2
d1c1759
5a4281c
 
 
58c05f2
5a4281c
f02b408
5a4281c
 
58c05f2
5a4281c
 
 
 
 
d1c1759
f02b408
 
e05ce15
 
5a4281c
58c05f2
5a4281c
 
6cf3eb8
58c05f2
5a4281c
 
58c05f2
5a4281c
58c05f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4281c
 
58c05f2
 
 
 
 
 
 
 
 
 
 
 
5a4281c
58c05f2
5a4281c
 
58c05f2
5a4281c
58c05f2
5a4281c
 
58c05f2
5a4281c
58c05f2
5a4281c
 
 
58c05f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4281c
58c05f2
5a4281c
 
58c05f2
5a4281c
58c05f2
 
 
 
 
 
 
f02b408
e05ce15
d1c1759
 
5a4281c
8e4132b
d1c1759
 
 
 
ee456d4
 
 
 
 
 
 
 
18489bd
ee456d4
 
 
 
58c05f2
 
 
 
ee456d4
 
58c05f2
 
 
 
ee456d4
 
 
18489bd
ee456d4
 
a4ace8b
18489bd
 
 
 
 
 
 
 
 
58c05f2
 
18489bd
 
d1c1759
 
ee456d4
ad2029b
d1c1759
ad2029b
d1c1759
ad2029b
d1c1759
8e4132b
 
18489bd
d1c1759
 
ad2029b
 
d1c1759
 
 
 
ad2029b
d1c1759
18489bd
d1c1759
 
 
 
 
 
 
 
 
 
 
 
ad2029b
f02b408
 
 
 
 
 
 
 
 
 
5a4281c
f02b408
 
 
 
 
 
 
 
 
 
5a4281c
f02b408
 
 
 
d1c1759
ad2029b
d1c1759
ad2029b
d1c1759
 
 
 
 
5a4281c
f02b408
 
e05ce15
58c05f2
 
 
5a4281c
58c05f2
 
5a4281c
58c05f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4281c
 
 
e05ce15
d1c1759
f02b408
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts

# πŸ”§ Config & Setup
st.set_page_config(
    page_title="🚲BikeAIπŸ† Claude/GPT Research",
    page_icon="πŸš²πŸ†",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "🚲BikeAIπŸ† Claude/GPT Research AI"
    }
)
load_dotenv()

openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
if 'OPENAI_API_KEY' in st.secrets:
    openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]

openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')

if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
    st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
    st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
    st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False

# 🎨 Minimal Custom CSS
st.markdown("""
<style>
    .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
    .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
    .stButton>button {
        margin-right: 0.5rem;
    }
</style>
""", unsafe_allow_html=True)

FILE_EMOJIS = {
    "md": "πŸ“",
    "mp3": "🎡",
}

def clean_for_speech(text: str) -> str:
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    # Remove links like (https://...)
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

def generate_filename(content, file_type="md"):
    # Prefix: YYMM_HHmm_ -> total 10 chars including underscore
    # Actually: %y%m_%H%M gives 9 chars, add trailing underscore for total 10 chars.
    # Example: 23 09 _12 45 _ => '2309_1245_'
    prefix = datetime.now().strftime("%y%m_%H%M") + "_"
    # Extract some words from content
    words = re.findall(r"\w+", content)
    # Take first 3 words for filename segment
    name_text = '_'.join(words[:3]) if words else 'file'
    filename = f"{prefix}{name_text}.{file_type}"
    return filename

def create_file(prompt, response, file_type="md"):
    # Decide which content to base the filename on (prefer response)
    base_content = response.strip() if response.strip() else prompt.strip()
    filename = generate_filename(base_content, file_type)
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(prompt + "\n\n" + response)
    return filename

def get_download_link(file):
    with open(file, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">πŸ“‚ Download {os.path.basename(file)}</a>'

@st.cache_resource
def speech_synthesis_html(result):
    html_code = f"""
    <html><body>
    <script>
    var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
    window.speechSynthesis.speak(msg);
    </script>
    </body></html>
    """
    components.html(html_code, height=0)

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    out_fn = generate_filename(text,"mp3")
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))

def play_and_download_audio(file_path):
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
        st.markdown(dl_link, unsafe_allow_html=True)

def process_image(image_path, user_prompt):
    with open(image_path, "rb") as imgf:
        image_data = imgf.read()
    b64img = base64.b64encode(image_data).decode("utf-8")
    resp = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
            ]}
        ],
        temperature=0.0,
    )
    return resp.choices[0].message.content

def process_audio(audio_path):
    with open(audio_path, "rb") as f:
        transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
    st.session_state.messages.append({"role": "user", "content": transcription.text})
    return transcription.text

def process_video(video_path, seconds_per_frame=1):
    vid = cv2.VideoCapture(video_path)
    total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vid.get(cv2.CAP_PROP_FPS)
    skip = int(fps*seconds_per_frame)
    frames_b64 = []
    for i in range(0, total, skip):
        vid.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = vid.read()
        if not ret: break
        _, buf = cv2.imencode(".jpg", frame)
        frames_b64.append(base64.b64encode(buf).decode("utf-8"))
    vid.release()
    return frames_b64

def process_video_with_gpt(video_path, prompt):
    frames = process_video(video_path)
    resp = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role":"system","content":"Analyze video frames."},
            {"role":"user","content":[
                {"type":"text","text":prompt},
                *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
            ]}
        ]
    )
    return resp.choices[0].message.content

def search_arxiv(query):
    st.write("πŸ” Searching ArXiv...")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm")
    st.markdown("### Mistral-8x7B-Instruct-v0.1 Result")
    st.markdown(r1)
    r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm")
    st.markdown("### Mistral-7B-Instruct-v0.2 Result")
    st.markdown(r2)
    return f"{r1}\n\n{r2}"

def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True):
    start = time.time()
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
    refs = r[0]
    r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
    result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}"

    st.markdown(result)

    # Clean for speech before TTS
    if vocal_summary:
        main_text = clean_for_speech(r2)
        audio_file_main = speak_with_edge_tts(main_text)
        st.write("### πŸŽ™οΈ Vocal Summary (Short Answer)")
        play_and_download_audio(audio_file_main)

    if extended_refs:
        summaries_text = "Here are the summaries from the references: " + refs.replace('"','')
        summaries_text = clean_for_speech(summaries_text)
        audio_file_refs = speak_with_edge_tts(summaries_text)
        st.write("### πŸ“œ Extended References & Summaries")
        play_and_download_audio(audio_file_refs)

    if titles_summary:
        titles = []
        for line in refs.split('\n'):
            m = re.search(r"\[([^\]]+)\]", line)
            if m:
                titles.append(m.group(1))
        if titles:
            titles_text = "Here are the titles of the papers: " + ", ".join(titles)
            titles_text = clean_for_speech(titles_text)
            audio_file_titles = speak_with_edge_tts(titles_text)
            st.write("### πŸ”– Paper Titles")
            play_and_download_audio(audio_file_titles)

    elapsed = time.time()-start
    st.write(f"**Total Elapsed:** {elapsed:.2f} s")
    # Create MD file from q and result
    create_file(q, result, "md")
    return result

def process_with_gpt(text):
    if not text: return
    st.session_state.messages.append({"role":"user","content":text})
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        c = openai_client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=st.session_state.messages,
            stream=False
        )
        ans = c.choices[0].message.content
        st.write("GPT-4o: " + ans)
        create_file(text, ans, "md")
        st.session_state.messages.append({"role":"assistant","content":ans})
    return ans

def process_with_claude(text):
    if not text: return
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        r = claude_client.messages.create(
            model="claude-3-sonnet-20240229",
            max_tokens=1000,
            messages=[{"role":"user","content":text}]
        )
        ans = r.content[0].text
        st.write("Claude: " + ans)
        create_file(text, ans, "md")
        st.session_state.chat_history.append({"user":text,"claude":ans})
    return ans

def create_zip_of_files(md_files, mp3_files):
    # Exclude README.md
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files
    if not all_files:
        return None
    # Build a descriptive name
    stems = [os.path.splitext(os.path.basename(f))[0] for f in all_files]
    joined = "_".join(stems)
    if len(joined) > 50:
        joined = joined[:50] + "_etc"
    zip_name = f"{joined}.zip"
    with zipfile.ZipFile(zip_name,'w') as z:
        for f in all_files:
            z.write(f)
    return zip_name

def load_files_for_sidebar():
    # Gather files
    md_files = glob.glob("*.md")
    mp3_files = glob.glob("*.mp3")

    # Exclude README.md
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']

    all_files = md_files + mp3_files

    # Group by first 10 chars of filename
    groups = defaultdict(list)
    for f in all_files:
        fname = os.path.basename(f)
        prefix = fname[:10]  # first 10 chars as group prefix
        groups[prefix].append(f)

    # Sort files in each group by mod time descending
    for prefix in groups:
        groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)

    # Sort prefixes by newest file time
    sorted_prefixes = sorted(groups.keys(), key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), reverse=True)

    return groups, sorted_prefixes

def extract_keywords_from_md(files):
    # Combine all MD content
    text = ""
    for f in files:
        if f.endswith(".md"):
            c = open(f,'r',encoding='utf-8').read()
            text += " " + c
    # Extract first 5 unique words
    words = re.findall(r"\w+", text.lower())
    unique_words = []
    for w in words:
        if w not in unique_words:
            unique_words.append(w)
        if len(unique_words) == 5:
            break
    return unique_words

def display_file_manager_sidebar(groups, sorted_prefixes):
    st.sidebar.title("🎡 Audio & Document Manager")

    # Collect all md and mp3 files for zip operations
    all_md = []
    all_mp3 = []
    for prefix in groups:
        for f in groups[prefix]:
            if f.endswith(".md"):
                all_md.append(f)
            elif f.endswith(".mp3"):
                all_mp3.append(f)

    top_bar = st.sidebar.columns(3)
    with top_bar[0]:
        if st.button("πŸ—‘ Del All MD"):
            for f in all_md:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[1]:
        if st.button("πŸ—‘ Del All MP3"):
            for f in all_mp3:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[2]:
        if st.button("⬇️ Zip All"):
            z = create_zip_of_files(all_md, all_mp3)
            if z:
                st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)

    for prefix in sorted_prefixes:
        files = groups[prefix]
        # Extract 5-word keywords from MD in this group
        kw = extract_keywords_from_md(files)
        keywords_str = " ".join(kw) if kw else "No Keywords"
        with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True):
            # Delete group / View group
            c1,c2 = st.columns(2)
            with c1:
                if st.button("πŸ‘€View Group", key="view_group_"+prefix):
                    st.session_state.viewing_prefix = prefix
                    # No rerun needed, just state update
            with c2:
                if st.button("πŸ—‘Del Group", key="del_group_"+prefix):
                    for f in files:
                        os.remove(f)
                    st.session_state.should_rerun = True

            for f in files:
                fname = os.path.basename(f)
                ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
                ext = os.path.splitext(fname)[1].lower().strip('.')
                st.write(f"**{fname}** - {ctime}")
                # Individual file actions are less necessary if we have group actions
                # But we can still provide them if desired.
                # The user requested grouping primarily, but we can keep minimal file actions if needed.
                # In instructions now, main focus is group view/delete.
                # We'll omit individual file view/edit here since we have group view.
                # If needed, re-add them similarly as before.
                # For now, rely on "View Group" to see all files.

def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI")
    tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True)

    model_choice = st.sidebar.radio("AI Model:", ["Arxiv","GPT-4o","Claude-3","GPT+Claude+Arxiv"], index=0)

    mycomponent = components.declare_component("mycomponent", path="mycomponent")
    val = mycomponent(my_input_value="Hello")
    if val:
        user_input = val.strip()
        if user_input:
            if model_choice == "GPT-4o":
                process_with_gpt(user_input)
            elif model_choice == "Claude-3":
                process_with_claude(user_input)
            elif model_choice == "Arxiv":
                st.subheader("Arxiv Only Results:")
                perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True)
            else:
                col1,col2,col3=st.columns(3)
                with col1:
                    st.subheader("GPT-4o Omni:")
                    try:
                        process_with_gpt(user_input)
                    except:
                        st.write('GPT 4o error')
                with col2:
                    st.subheader("Claude-3 Sonnet:")
                    try:
                        process_with_claude(user_input)
                    except:
                        st.write('Claude error')
                with col3:
                    st.subheader("Arxiv + Mistral:")
                    try:
                        perform_ai_lookup(user_input, vocal_summary=True, extended_refs=False, titles_summary=True)
                    except:
                        st.write("Arxiv error")

    if tab_main == "πŸ” Search ArXiv":
        st.subheader("πŸ” Search ArXiv")
        q=st.text_input("Research query:")

        st.markdown("### πŸŽ›οΈ Audio Generation Options")
        vocal_summary = st.checkbox("πŸŽ™οΈ Vocal Summary (Short Answer)", value=True)
        extended_refs = st.checkbox("πŸ“œ Extended References & Summaries (Long)", value=False)
        titles_summary = st.checkbox("πŸ”– Paper Titles Only", value=True)

        if q and st.button("Run ArXiv Query"):
            perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, titles_summary=titles_summary)

    elif tab_main == "🎀 Voice Input":
        st.subheader("🎀 Voice Recognition")
        user_text = st.text_area("Message:", height=100)
        user_text = user_text.strip()
        if st.button("Send πŸ“¨"):
            if user_text:
                if model_choice == "GPT-4o":
                    process_with_gpt(user_text)
                elif model_choice == "Claude-3":
                    process_with_claude(user_text)
                elif model_choice == "Arxiv":
                    st.subheader("Arxiv Only Results:")
                    perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True)
                else:
                    col1,col2,col3=st.columns(3)
                    with col1:
                        st.subheader("GPT-4o Omni:")
                        process_with_gpt(user_text)
                    with col2:
                        st.subheader("Claude-3 Sonnet:")
                        process_with_claude(user_text)
                    with col3:
                        st.subheader("Arxiv & Mistral:")
                        res = perform_ai_lookup(user_text, vocal_summary=True, extended_refs=False, titles_summary=True)
                        st.markdown(res)
        st.subheader("πŸ“œ Chat History")
        t1,t2=st.tabs(["Claude History","GPT-4o History"])
        with t1:
            for c in st.session_state.chat_history:
                st.write("**You:**", c["user"])
                st.write("**Claude:**", c["claude"])
        with t2:
            for m in st.session_state.messages:
                with st.chat_message(m["role"]):
                    st.markdown(m["content"])

    elif tab_main == "πŸ“Έ Media Gallery":
        st.header("🎬 Media Gallery - Images and Videos")
        tabs = st.tabs(["πŸ–ΌοΈ Images", "πŸŽ₯ Video"])
        with tabs[0]:
            imgs = glob.glob("*.png")+glob.glob("*.jpg")
            if imgs:
                c = st.slider("Cols",1,5,3)
                cols = st.columns(c)
                for i,f in enumerate(imgs):
                    with cols[i%c]:
                        st.image(Image.open(f),use_container_width=True)
                        if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
                            a = process_image(f,"Describe this image.")
                            st.markdown(a)
            else:
                st.write("No images found.")
        with tabs[1]:
            vids = glob.glob("*.mp4")
            if vids:
                for v in vids:
                    with st.expander(f"πŸŽ₯ {os.path.basename(v)}"):
                        st.markdown(get_media_html(v,"video"),unsafe_allow_html=True)
                        if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
                            a = process_video_with_gpt(v,"Describe video.")
                            st.markdown(a)
            else:
                st.write("No videos found.")

    elif tab_main == "πŸ“ File Editor":
        if getattr(st.session_state,'current_file',None):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_text = st.text_area("Content:", st.session_state.file_content, height=300)
            if st.button("Save"):
                with open(st.session_state.current_file,'w',encoding='utf-8') as f:
                    f.write(new_text)
                st.success("Updated!")
                st.session_state.should_rerun = True
        else:
            st.write("Select a file from the sidebar to edit.")

    # After main content, load and show file groups in sidebar
    groups, sorted_prefixes = load_files_for_sidebar()
    display_file_manager_sidebar(groups, sorted_prefixes)

    # If viewing a prefix group, show all files in main area
    if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
        st.write("---")
        st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
        # Show all files in this prefix group in order (mp3 and md)
        # Sort by mod time descending (already sorted)
        for f in groups[st.session_state.viewing_prefix]:
            fname = os.path.basename(f)
            ext = os.path.splitext(fname)[1].lower().strip('.')
            st.write(f"### {fname}")
            if ext == "md":
                content = open(f,'r',encoding='utf-8').read()
                st.markdown(content)
            elif ext == "mp3":
                st.audio(f)
            else:
                # just show a download link
                st.markdown(get_download_link(f), unsafe_allow_html=True)
        if st.button("Close Group View"):
            st.session_state.viewing_prefix = None

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.rerun()

if __name__=="__main__":
    main()