Spaces:
Running
Running
File size: 30,947 Bytes
871a88e a2dcff5 871a88e a2dcff5 871a88e a2dcff5 871a88e a2dcff5 871a88e a2dcff5 fdc1acb 871a88e fdc1acb 871a88e a2dcff5 871a88e fdc1acb a2dcff5 b9432f3 a2dcff5 fdc1acb a2dcff5 fdc1acb a2dcff5 fdc1acb b9432f3 a2dcff5 b9432f3 a2dcff5 b9432f3 a2dcff5 b9432f3 a2dcff5 b9432f3 a2dcff5 b9432f3 a2dcff5 b9432f3 fdc1acb 871a88e b9432f3 a2dcff5 871a88e fdc1acb b9432f3 a2dcff5 871a88e a2dcff5 871a88e a2dcff5 b9432f3 871a88e b9432f3 871a88e a2dcff5 fdc1acb b9432f3 a2dcff5 b9432f3 871a88e a2dcff5 fdc1acb 093e8e7 b9432f3 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 093e8e7 a2dcff5 fdc1acb 093e8e7 871a88e b9432f3 a2dcff5 871a88e a2dcff5 871a88e a2dcff5 871a88e a2dcff5 fdc1acb 871a88e b9432f3 a2dcff5 871a88e a2dcff5 871a88e a2dcff5 fdc1acb 871a88e fdc1acb a2dcff5 871a88e a2dcff5 fdc1acb a2dcff5 fdc1acb 871a88e a2dcff5 871a88e a2dcff5 093e8e7 871a88e a2dcff5 b9432f3 a2dcff5 fdc1acb a2dcff5 fdc1acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
import io
import sys
# 1. Core Configuration & Setup
st.set_page_config(
page_title="π²BikeAIπ Claude/GPT Research",
page_icon="π²π",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "π²BikeAIπ Claude/GPT Research AI"
}
)
load_dotenv()
# 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
# 3. Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
# 4. Custom CSS
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button {
margin-right: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
FILE_EMOJIS = {
"md": "π",
"mp3": "π΅",
}
# 5. High-Information Content Extraction
def get_high_info_terms(text: str) -> list:
"""Extract high-information terms from text, including key phrases"""
stop_words = set([
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
])
key_phrases = [
'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
'personal assistant', 'natural language', 'computer vision', 'data science',
'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
'large language model', 'transformer model', 'attention mechanism',
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
'cognitive science', 'human computer', 'decision making', 'arxiv search',
'research paper', 'scientific study', 'empirical analysis'
]
# First identify key phrases
preserved_phrases = []
lower_text = text.lower()
for phrase in key_phrases:
if phrase in lower_text:
preserved_phrases.append(phrase)
text = text.replace(phrase, '')
# Then extract individual high-info words
words = re.findall(r'\b\w+(?:-\w+)*\b', text)
high_info_words = [
word.lower() for word in words
if len(word) > 3
and word.lower() not in stop_words
and not word.isdigit()
and any(c.isalpha() for c in word)
]
# Combine and deduplicate while preserving order
all_terms = preserved_phrases + high_info_words
seen = set()
unique_terms = []
for term in all_terms:
if term not in seen:
seen.add(term)
unique_terms.append(term)
max_terms = 5
return unique_terms[:max_terms]
# 6. Filename Generation
def generate_filename(content, file_type="md"):
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
info_terms = get_high_info_terms(content)
name_text = '_'.join(term.replace(' ', '-') for term in info_terms) if info_terms else 'file'
max_length = 100
if len(name_text) > max_length:
name_text = name_text[:max_length]
filename = f"{prefix}{name_text}.{file_type}"
return filename
# 7. Audio Processing
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
@st.cache_resource
def speech_synthesis_html(result):
"""Create HTML for speech synthesis"""
html_code = f"""
<html><body>
<script>
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
window.speechSynthesis.speak(msg);
</script>
</body></html>
"""
components.html(html_code, height=0)
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Generate audio using Edge TTS"""
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, "mp3")
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Wrapper for edge TTS generation"""
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
"""Play and provide download link for audio"""
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
# 8. Media Processing
def process_image(image_path, user_prompt):
"""Process image with GPT-4V"""
with open(image_path, "rb") as imgf:
image_data = imgf.read()
b64img = base64.b64encode(image_data).decode("utf-8")
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
]}
],
temperature=0.0,
)
return resp.choices[0].message.content
def process_audio(audio_path):
"""Process audio with Whisper"""
with open(audio_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
st.session_state.messages.append({"role": "user", "content": transcription.text})
return transcription.text
def process_video(video_path, seconds_per_frame=1):
"""Extract frames from video"""
vid = cv2.VideoCapture(video_path)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vid.get(cv2.CAP_PROP_FPS)
skip = int(fps*seconds_per_frame)
frames_b64 = []
for i in range(0, total, skip):
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = vid.read()
if not ret: break
_, buf = cv2.imencode(".jpg", frame)
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
vid.release()
return frames_b64
def process_video_with_gpt(video_path, prompt):
"""Analyze video frames with GPT-4V"""
frames = process_video(video_path)
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role":"system","content":"Analyze video frames."},
{"role":"user","content":[
{"type":"text","text":prompt},
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
]}
]
)
return resp.choices[0].message.content
# 9. AI Model Integration
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False):
"""Perform Arxiv search and generate audio summaries"""
start = time.time()
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
refs = r[0]
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
result = f"### π {q}\n\n{r2}\n\n{refs}"
st.markdown(result)
# Generate full audio version if requested
if full_audio:
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
audio_file_full = speak_with_edge_tts(complete_text)
st.write("### π Complete Audio Response")
play_and_download_audio(audio_file_full)
if vocal_summary:
main_text = clean_for_speech(r2)
audio_file_main = speak_with_edge_tts(main_text)
st.write("### ποΈ Vocal Summary (Short Answer)")
play_and_download_audio(audio_file_main)
if extended_refs:
summaries_text = "Here are the summaries from the references: " + refs.replace('"','')
summaries_text = clean_for_speech(summaries_text)
audio_file_refs = speak_with_edge_tts(summaries_text)
st.write("### π Extended References & Summaries")
play_and_download_audio(audio_file_refs)
if titles_summary:
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Here are the titles of the papers: " + ", ".join(titles)
titles_text = clean_for_speech(titles_text)
audio_file_titles = speak_with_edge_tts(titles_text)
st.write("### π Paper Titles")
play_and_download_audio(audio_file_titles)
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
# We must provide a filename for the create_file function:
# Use generate_filename from 'q' and 'result'
filename = generate_filename(result, "md")
create_file(filename, q, result, should_save=True)
# --- Code Interpreter Integration ---
# Parse out papers from refs if available
# Format assumed:
# [Title] Title of Paper
# Summary: ...
# Link: ...
# PDF: ...
# separate by "[Title]"
papers_raw = refs.strip().split("[Title]")
papers = []
for p in papers_raw:
p = p.strip()
if not p:
continue
lines = p.split("\n")
title_line = lines[0].strip() if lines else ""
summary_line = ""
link_line = ""
pdf_line = ""
for line in lines[1:]:
line = line.strip()
if line.startswith("Summary:"):
summary_line = line.replace("Summary:", "").strip()
elif line.startswith("Link:"):
link_line = line.replace("Link:", "").strip()
elif line.startswith("PDF:"):
pdf_line = line.replace("PDF:", "").strip()
if title_line and summary_line:
papers.append({
"title": title_line,
"summary": summary_line,
"link": link_line,
"pdf": pdf_line
})
st.write("## Code Interpreter Options for Each Paper")
for i, paper in enumerate(papers):
st.write(f"**Paper {i+1}:** {paper['title']}")
st.write(f"**Summary:** {paper['summary']}")
if paper['link']:
st.write(f"[Arxiv Link]({paper['link']})")
if paper['pdf']:
st.write(f"[PDF]({paper['pdf']})")
code_interpreter = st.checkbox(f"Code Interpreter for '{paper['title']}'", key=f"ci_{i}")
if code_interpreter:
code_task = st.text_area(
f"Describe the Python/Streamlit functionality to implement based on this paper:",
height=100, key=f"code_task_{i}"
)
if st.button(f"Generate Code for Paper {i+1}", key=f"gen_code_{i}"):
if code_task.strip():
# Prompt the model to generate code
code_prompt = f"""
You are a coding assistant.
The user has a research paper titled: "{paper['title']}"
and summary: "{paper['summary']}".
The user wants the following functionality implemented in Python with Streamlit and possible HTML5 components:
"{code_task}"
Requirements:
- The code should be self-contained Python code, runnable within this Streamlit environment.
- It should use `streamlit` library for UI and `print()` for textual outputs.
- Provide only the Python code block, do not include extra explanations.
"""
completion = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful coding assistant."},
{"role": "user", "content": code_prompt}
],
temperature=0.0
)
generated_code = completion.choices[0].message.content
st.write("### Generated Code")
st.code(generated_code, language="python")
# Execute the generated code
exec_locals = {}
original_stdout = sys.stdout
redirected_output = io.StringIO()
sys.stdout = redirected_output
try:
exec(generated_code, {}, exec_locals)
except Exception as e:
st.error(f"Error running generated code: {e}")
finally:
sys.stdout = original_stdout
code_output = redirected_output.getvalue()
st.write("### Code Output")
st.write(code_output)
# TTS on code output
if code_output.strip():
audio_file = speak_with_edge_tts(code_output)
if audio_file:
play_and_download_audio(audio_file)
return result
def process_with_gpt(text):
"""Process text with GPT-4"""
if not text: return
st.session_state.messages.append({"role":"user","content":text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
c = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages,
stream=False
)
ans = c.choices[0].message.content
st.write("GPT-4o: " + ans)
filename = generate_filename(ans.strip() if ans.strip() else text.strip(), "md")
create_file(filename, text, ans, should_save=True)
st.session_state.messages.append({"role":"assistant","content":ans})
return ans
def process_with_claude(text):
"""Process text with Claude"""
if not text: return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
r = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role":"user","content":text}]
)
ans = r.content[0].text
st.write("Claude-3.5: " + ans)
filename = generate_filename(ans.strip() if ans.strip() else text.strip(), "md")
create_file(filename, text, ans, should_save=True)
st.session_state.chat_history.append({"user":text,"claude":ans})
return ans
# 10. File Management
def create_zip_of_files(md_files, mp3_files):
"""Create zip with intelligent naming"""
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f, 'r', encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3'):
all_content.append(os.path.basename(f))
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content)
timestamp = datetime.now().strftime("%y%m_%H%M")
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
zip_name = f"{timestamp}_{name_text}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def load_files_for_sidebar():
"""Load and group files for sidebar display"""
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:10]
groups[prefix].append(f)
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
sorted_prefixes = sorted(groups.keys(),
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
"""Extract keywords from markdown files"""
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
return get_high_info_terms(text)
def display_file_manager_sidebar(groups, sorted_prefixes):
"""Display file manager in sidebar"""
st.sidebar.title("π΅ Audio & Document Manager")
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("π Del All MD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("π Del All MP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("β¬οΈ Zip All"):
z = create_zip_of_files(all_md, all_mp3)
if z:
with open(z, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
dl_link = f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(z)}">π Download {os.path.basename(z)}</a>'
st.sidebar.markdown(dl_link,unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True):
c1,c2 = st.columns(2)
with c1:
if st.button("πView Group", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
with c2:
if st.button("πDel Group", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.success(f"Deleted all files in group {prefix} successfully!")
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
st.write(f"**{fname}** - {ctime}")
# 11. New create_file function
context = {} # Execution context for code blocks
def create_file(filename, prompt, response, should_save=True):
if not should_save:
return
base_filename, ext = os.path.splitext(filename)
combined_content = ""
# Add Prompt with markdown title and emoji
combined_content += "# Prompt π\n" + prompt + "\n\n"
# Add Response with markdown title and emoji
combined_content += "# Response π¬\n" + response + "\n\n"
# Check for code blocks in the response
resources = re.findall(r"```([\s\S]*?)```", response)
for resource in resources:
# Check if the resource contains Python code
if "python" in resource.lower():
cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)
# Add Code Results title with markdown and emoji
combined_content += "# Code Results π\n"
original_stdout = sys.stdout
sys.stdout = io.StringIO()
try:
exec(cleaned_code, context)
code_output = sys.stdout.getvalue()
combined_content += f"```\n{code_output}\n```\n\n"
realtimeEvalResponse = "# Code Results π\n" + "```" + code_output + "```\n\n"
st.code(realtimeEvalResponse)
except Exception as e:
combined_content += f"```python\nError executing Python code: {e}\n```\n\n"
sys.stdout = original_stdout
else:
# Add non-Python resources with markdown and emoji
combined_content += "# Resource π οΈ\n" + "```" + resource + "```\n\n"
# Save the combined content to a Markdown file
if should_save:
with open(f"{base_filename}.md", 'w') as file:
file.write(combined_content)
st.code(combined_content)
# Create a Base64 encoded link for the file
with open(f"{base_filename}.md", 'rb') as file:
encoded_file = base64.b64encode(file.read()).decode()
href = f'<a href="data:file/markdown;base64,{encoded_file}" download="{filename}">Download File π</a>'
st.markdown(href, unsafe_allow_html=True)
# 12. Main Application
def main():
st.sidebar.markdown("### π²BikeAIπ Multi-Agent Research AI")
tab_main = st.radio("Action:",["π€ Voice Input","πΈ Media Gallery","π Search ArXiv","π File Editor"],horizontal=True)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello")
# Show input in a text box for editing if detected
if val:
val_stripped = val.replace('\n', ' ')
edited_input = st.text_area("Edit your detected input:", value=val_stripped, height=100)
run_option = st.selectbox("Select AI Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
col1, col2 = st.columns(2)
with col1:
autorun = st.checkbox("AutoRun on input change", value=False)
with col2:
full_audio = st.checkbox("Generate Complete Audio", value=False,
help="Generate audio for the complete response including all papers and summaries")
input_changed = (val != st.session_state.old_val)
if autorun and input_changed:
st.session_state.old_val = val
if run_option == "Arxiv":
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=full_audio)
else:
if run_option == "GPT-4o":
process_with_gpt(edited_input)
elif run_option == "Claude-3.5":
process_with_claude(edited_input)
else:
if st.button("Process Input"):
st.session_state.old_val = val
if run_option == "Arxiv":
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=full_audio)
else:
if run_option == "GPT-4o":
process_with_gpt(edited_input)
elif run_option == "Claude-3.5":
process_with_claude(edited_input)
if tab_main == "π Search ArXiv":
st.subheader("π Search ArXiv")
q = st.text_input("Research query:")
st.markdown("### ποΈ Audio Generation Options")
vocal_summary = st.checkbox("ποΈ Vocal Summary (Short Answer)", value=True)
extended_refs = st.checkbox("π Extended References & Summaries (Long)", value=False)
titles_summary = st.checkbox("π Paper Titles Only", value=True)
full_audio = st.checkbox("π Generate Complete Audio Response", value=False,
help="Generate audio for the complete response including all papers and summaries")
if q and st.button("Run ArXiv Query"):
perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
titles_summary=titles_summary, full_audio=full_audio)
elif tab_main == "π€ Voice Input":
st.subheader("π€ Voice Recognition")
user_text = st.text_area("Message:", height=100)
user_text = user_text.strip().replace('\n', ' ')
if st.button("Send π¨"):
process_with_gpt(user_text)
st.subheader("π Chat History")
t1,t2=st.tabs(["Claude History","GPT-4o History"])
with t1:
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Claude:**", c["claude"])
with t2:
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
elif tab_main == "πΈ Media Gallery":
st.header("π¬ Media Gallery - Images and Videos")
tabs = st.tabs(["πΌοΈ Images", "π₯ Video"])
with tabs[0]:
imgs = glob.glob("*.png")+glob.glob("*.jpg")
if imgs:
c = st.slider("Cols",1,5,3)
cols = st.columns(c)
for i,f in enumerate(imgs):
with cols[i%c]:
st.image(Image.open(f),use_container_width=True)
if st.button(f"π Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
a = process_image(f,"Describe this image.")
st.markdown(a)
else:
st.write("No images found.")
with tabs[1]:
vids = glob.glob("*.mp4")
if vids:
for v in vids:
with st.expander(f"π₯ {os.path.basename(v)}"):
st.video(v)
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
a = process_video_with_gpt(v,"Describe video.")
st.markdown(a)
else:
st.write("No videos found.")
elif tab_main == "π File Editor":
if getattr(st.session_state,'current_file',None):
st.subheader(f"Editing: {st.session_state.current_file}")
new_text = st.text_area("Content:", st.session_state.file_content, height=300)
if st.button("Save"):
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
f.write(new_text)
st.success("Updated!")
st.session_state.should_rerun = True
else:
st.write("Select a file from the sidebar to edit.")
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
with open(f, "rb") as file:
b64 = base64.b64encode(file.read()).decode()
dl_link = f'<a href="data:file/{ext};base64,{b64}" download="{fname}">Download {fname}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
if st.button("Close Group View"):
st.session_state.viewing_prefix = None
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__=="__main__":
main()
|