File size: 30,947 Bytes
871a88e
a2dcff5
 
 
871a88e
a2dcff5
 
 
871a88e
 
a2dcff5
 
871a88e
a2dcff5
 
 
871a88e
a2dcff5
 
 
 
fdc1acb
 
871a88e
fdc1acb
871a88e
a2dcff5
 
 
 
 
 
 
 
 
871a88e
 
 
fdc1acb
a2dcff5
 
 
 
 
 
b9432f3
a2dcff5
 
 
 
 
 
fdc1acb
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc1acb
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc1acb
b9432f3
a2dcff5
b9432f3
 
a2dcff5
 
 
 
 
 
b9432f3
 
 
 
a2dcff5
 
 
 
 
 
b9432f3
 
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9432f3
a2dcff5
 
 
 
 
 
 
 
b9432f3
a2dcff5
 
b9432f3
fdc1acb
871a88e
 
b9432f3
 
a2dcff5
 
 
 
 
 
 
871a88e
fdc1acb
b9432f3
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871a88e
 
a2dcff5
871a88e
 
 
a2dcff5
 
 
b9432f3
871a88e
 
 
 
b9432f3
871a88e
 
a2dcff5
 
 
 
 
 
 
fdc1acb
b9432f3
 
 
a2dcff5
 
b9432f3
 
 
 
 
 
 
 
 
 
 
 
871a88e
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc1acb
093e8e7
b9432f3
093e8e7
 
a2dcff5
 
 
 
093e8e7
 
 
a2dcff5
093e8e7
a2dcff5
 
093e8e7
a2dcff5
093e8e7
 
a2dcff5
 
 
 
093e8e7
 
a2dcff5
 
 
 
 
093e8e7
 
a2dcff5
 
 
 
 
093e8e7
a2dcff5
 
 
093e8e7
a2dcff5
093e8e7
a2dcff5
 
fdc1acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
093e8e7
 
871a88e
b9432f3
a2dcff5
871a88e
a2dcff5
 
871a88e
a2dcff5
871a88e
 
 
 
a2dcff5
 
fdc1acb
 
871a88e
 
 
 
b9432f3
a2dcff5
 
 
871a88e
a2dcff5
871a88e
 
 
 
a2dcff5
 
fdc1acb
 
871a88e
 
 
fdc1acb
a2dcff5
 
 
 
 
 
871a88e
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc1acb
 
 
 
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc1acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871a88e
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871a88e
 
a2dcff5
093e8e7
871a88e
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9432f3
 
a2dcff5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc1acb
 
 
 
a2dcff5
 
 
 
 
 
 
 
fdc1acb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
import io
import sys

# 1. Core Configuration & Setup
st.set_page_config(
    page_title="🚲BikeAIπŸ† Claude/GPT Research",
    page_icon="πŸš²πŸ†",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "🚲BikeAIπŸ† Claude/GPT Research AI"
    }
)
load_dotenv()

# 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
if 'OPENAI_API_KEY' in st.secrets:
    openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]

openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')

# 3. Session State Management
if 'transcript_history' not in st.session_state:
    st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
    st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
    st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
    st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
    st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
    st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
    st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
    st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
    st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
    st.session_state['old_val'] = None

# 4. Custom CSS
st.markdown("""
<style>
    .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
    .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
    .stButton>button {
        margin-right: 0.5rem;
    }
</style>
""", unsafe_allow_html=True)

FILE_EMOJIS = {
    "md": "πŸ“",
    "mp3": "🎡",
}

# 5. High-Information Content Extraction
def get_high_info_terms(text: str) -> list:
    """Extract high-information terms from text, including key phrases"""
    stop_words = set([
        'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
        'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
        'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
        'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
        'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
        'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
        'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
    ])

    key_phrases = [
        'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
        'personal assistant', 'natural language', 'computer vision', 'data science',
        'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
        'large language model', 'transformer model', 'attention mechanism',
        'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
        'cognitive science', 'human computer', 'decision making', 'arxiv search',
        'research paper', 'scientific study', 'empirical analysis'
    ]

    # First identify key phrases
    preserved_phrases = []
    lower_text = text.lower()
    for phrase in key_phrases:
        if phrase in lower_text:
            preserved_phrases.append(phrase)
            text = text.replace(phrase, '')

    # Then extract individual high-info words
    words = re.findall(r'\b\w+(?:-\w+)*\b', text)
    high_info_words = [
        word.lower() for word in words 
        if len(word) > 3
        and word.lower() not in stop_words
        and not word.isdigit()
        and any(c.isalpha() for c in word)
    ]

    # Combine and deduplicate while preserving order
    all_terms = preserved_phrases + high_info_words
    seen = set()
    unique_terms = []
    for term in all_terms:
        if term not in seen:
            seen.add(term)
            unique_terms.append(term)

    max_terms = 5
    return unique_terms[:max_terms]

# 6. Filename Generation
def generate_filename(content, file_type="md"):
    prefix = datetime.now().strftime("%y%m_%H%M") + "_"
    info_terms = get_high_info_terms(content)
    name_text = '_'.join(term.replace(' ', '-') for term in info_terms) if info_terms else 'file'
    
    max_length = 100
    if len(name_text) > max_length:
        name_text = name_text[:max_length]
    
    filename = f"{prefix}{name_text}.{file_type}"
    return filename

# 7. Audio Processing
def clean_for_speech(text: str) -> str:
    """Clean text for speech synthesis"""
    text = text.replace("\n", " ")
    text = text.replace("</s>", " ")
    text = text.replace("#", "")
    text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
    text = re.sub(r"\s+", " ", text).strip()
    return text

@st.cache_resource
def speech_synthesis_html(result):
    """Create HTML for speech synthesis"""
    html_code = f"""
    <html><body>
    <script>
    var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
    window.speechSynthesis.speak(msg);
    </script>
    </body></html>
    """
    components.html(html_code, height=0)

async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    """Generate audio using Edge TTS"""
    text = clean_for_speech(text)
    if not text.strip():
        return None
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
    out_fn = generate_filename(text, "mp3")
    await communicate.save(out_fn)
    return out_fn

def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
    """Wrapper for edge TTS generation"""
    return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))

def play_and_download_audio(file_path):
    """Play and provide download link for audio"""
    if file_path and os.path.exists(file_path):
        st.audio(file_path)
        dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
        st.markdown(dl_link, unsafe_allow_html=True)

# 8. Media Processing
def process_image(image_path, user_prompt):
    """Process image with GPT-4V"""
    with open(image_path, "rb") as imgf:
        image_data = imgf.read()
    b64img = base64.b64encode(image_data).decode("utf-8")
    resp = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
            ]}
        ],
        temperature=0.0,
    )
    return resp.choices[0].message.content

def process_audio(audio_path):
    """Process audio with Whisper"""
    with open(audio_path, "rb") as f:
        transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
    st.session_state.messages.append({"role": "user", "content": transcription.text})
    return transcription.text

def process_video(video_path, seconds_per_frame=1):
    """Extract frames from video"""
    vid = cv2.VideoCapture(video_path)
    total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vid.get(cv2.CAP_PROP_FPS)
    skip = int(fps*seconds_per_frame)
    frames_b64 = []
    for i in range(0, total, skip):
        vid.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = vid.read()
        if not ret: break
        _, buf = cv2.imencode(".jpg", frame)
        frames_b64.append(base64.b64encode(buf).decode("utf-8"))
    vid.release()
    return frames_b64

def process_video_with_gpt(video_path, prompt):
    """Analyze video frames with GPT-4V"""
    frames = process_video(video_path)
    resp = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role":"system","content":"Analyze video frames."},
            {"role":"user","content":[
                {"type":"text","text":prompt},
                *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
            ]}
        ]
    )
    return resp.choices[0].message.content

# 9. AI Model Integration
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False):
    """Perform Arxiv search and generate audio summaries"""
    start = time.time()
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
    refs = r[0]
    r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
    result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}"

    st.markdown(result)

    # Generate full audio version if requested
    if full_audio:
        complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
        audio_file_full = speak_with_edge_tts(complete_text)
        st.write("### πŸ“š Complete Audio Response")
        play_and_download_audio(audio_file_full)

    if vocal_summary:
        main_text = clean_for_speech(r2)
        audio_file_main = speak_with_edge_tts(main_text)
        st.write("### πŸŽ™οΈ Vocal Summary (Short Answer)")
        play_and_download_audio(audio_file_main)

    if extended_refs:
        summaries_text = "Here are the summaries from the references: " + refs.replace('"','')
        summaries_text = clean_for_speech(summaries_text)
        audio_file_refs = speak_with_edge_tts(summaries_text)
        st.write("### πŸ“œ Extended References & Summaries")
        play_and_download_audio(audio_file_refs)

    if titles_summary:
        titles = []
        for line in refs.split('\n'):
            m = re.search(r"\[([^\]]+)\]", line)
            if m:
                titles.append(m.group(1))
        if titles:
            titles_text = "Here are the titles of the papers: " + ", ".join(titles)
            titles_text = clean_for_speech(titles_text)
            audio_file_titles = speak_with_edge_tts(titles_text)
            st.write("### πŸ”– Paper Titles")
            play_and_download_audio(audio_file_titles)

    elapsed = time.time()-start
    st.write(f"**Total Elapsed:** {elapsed:.2f} s")

    # We must provide a filename for the create_file function:
    # Use generate_filename from 'q' and 'result'
    filename = generate_filename(result, "md")
    create_file(filename, q, result, should_save=True)

    # --- Code Interpreter Integration ---
    # Parse out papers from refs if available
    # Format assumed:
    # [Title] Title of Paper
    # Summary: ...
    # Link: ...
    # PDF: ...
    # separate by "[Title]"
    papers_raw = refs.strip().split("[Title]")
    papers = []
    for p in papers_raw:
        p = p.strip()
        if not p:
            continue
        lines = p.split("\n")
        title_line = lines[0].strip() if lines else ""
        summary_line = ""
        link_line = ""
        pdf_line = ""
        for line in lines[1:]:
            line = line.strip()
            if line.startswith("Summary:"):
                summary_line = line.replace("Summary:", "").strip()
            elif line.startswith("Link:"):
                link_line = line.replace("Link:", "").strip()
            elif line.startswith("PDF:"):
                pdf_line = line.replace("PDF:", "").strip()

        if title_line and summary_line:
            papers.append({
                "title": title_line,
                "summary": summary_line,
                "link": link_line,
                "pdf": pdf_line
            })

    st.write("## Code Interpreter Options for Each Paper")
    for i, paper in enumerate(papers):
        st.write(f"**Paper {i+1}:** {paper['title']}")
        st.write(f"**Summary:** {paper['summary']}")
        if paper['link']:
            st.write(f"[Arxiv Link]({paper['link']})")
        if paper['pdf']:
            st.write(f"[PDF]({paper['pdf']})")

        code_interpreter = st.checkbox(f"Code Interpreter for '{paper['title']}'", key=f"ci_{i}")
        if code_interpreter:
            code_task = st.text_area(
                f"Describe the Python/Streamlit functionality to implement based on this paper:",
                height=100, key=f"code_task_{i}"
            )
            if st.button(f"Generate Code for Paper {i+1}", key=f"gen_code_{i}"):
                if code_task.strip():
                    # Prompt the model to generate code
                    code_prompt = f"""
                    You are a coding assistant. 
                    The user has a research paper titled: "{paper['title']}" 
                    and summary: "{paper['summary']}".
                    The user wants the following functionality implemented in Python with Streamlit and possible HTML5 components:
                    "{code_task}"

                    Requirements:
                    - The code should be self-contained Python code, runnable within this Streamlit environment.
                    - It should use `streamlit` library for UI and `print()` for textual outputs.
                    - Provide only the Python code block, do not include extra explanations.
                    """

                    completion = openai_client.chat.completions.create(
                        model=st.session_state["openai_model"],
                        messages=[
                            {"role": "system", "content": "You are a helpful coding assistant."},
                            {"role": "user", "content": code_prompt}
                        ],
                        temperature=0.0
                    )
                    generated_code = completion.choices[0].message.content

                    st.write("### Generated Code")
                    st.code(generated_code, language="python")

                    # Execute the generated code
                    exec_locals = {}
                    original_stdout = sys.stdout
                    redirected_output = io.StringIO()
                    sys.stdout = redirected_output
                    try:
                        exec(generated_code, {}, exec_locals)
                    except Exception as e:
                        st.error(f"Error running generated code: {e}")
                    finally:
                        sys.stdout = original_stdout

                    code_output = redirected_output.getvalue()
                    st.write("### Code Output")
                    st.write(code_output)

                    # TTS on code output
                    if code_output.strip():
                        audio_file = speak_with_edge_tts(code_output)
                        if audio_file:
                            play_and_download_audio(audio_file)

    return result

def process_with_gpt(text):
    """Process text with GPT-4"""
    if not text: return
    st.session_state.messages.append({"role":"user","content":text})
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        c = openai_client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=st.session_state.messages,
            stream=False
        )
        ans = c.choices[0].message.content
        st.write("GPT-4o: " + ans)
        filename = generate_filename(ans.strip() if ans.strip() else text.strip(), "md")
        create_file(filename, text, ans, should_save=True)
        st.session_state.messages.append({"role":"assistant","content":ans})
    return ans

def process_with_claude(text):
    """Process text with Claude"""
    if not text: return
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        r = claude_client.messages.create(
            model="claude-3-sonnet-20240229",
            max_tokens=1000,
            messages=[{"role":"user","content":text}]
        )
        ans = r.content[0].text
        st.write("Claude-3.5: " + ans)
        filename = generate_filename(ans.strip() if ans.strip() else text.strip(), "md")
        create_file(filename, text, ans, should_save=True)
        st.session_state.chat_history.append({"user":text,"claude":ans})
    return ans

# 10. File Management
def create_zip_of_files(md_files, mp3_files):
    """Create zip with intelligent naming"""
    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files
    if not all_files:
        return None

    all_content = []
    for f in all_files:
        if f.endswith('.md'):
            with open(f, 'r', encoding='utf-8') as file:
                all_content.append(file.read())
        elif f.endswith('.mp3'):
            all_content.append(os.path.basename(f))
    
    combined_content = " ".join(all_content)
    info_terms = get_high_info_terms(combined_content)
    
    timestamp = datetime.now().strftime("%y%m_%H%M")
    name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
    zip_name = f"{timestamp}_{name_text}.zip"
    
    with zipfile.ZipFile(zip_name,'w') as z:
        for f in all_files:
            z.write(f)
    
    return zip_name

def load_files_for_sidebar():
    """Load and group files for sidebar display"""
    md_files = glob.glob("*.md")
    mp3_files = glob.glob("*.mp3")

    md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
    all_files = md_files + mp3_files

    groups = defaultdict(list)
    for f in all_files:
        fname = os.path.basename(f)
        prefix = fname[:10]
        groups[prefix].append(f)

    for prefix in groups:
        groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)

    sorted_prefixes = sorted(groups.keys(), 
                           key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), 
                           reverse=True)
    return groups, sorted_prefixes

def extract_keywords_from_md(files):
    """Extract keywords from markdown files"""
    text = ""
    for f in files:
        if f.endswith(".md"):
            c = open(f,'r',encoding='utf-8').read()
            text += " " + c
    return get_high_info_terms(text)

def display_file_manager_sidebar(groups, sorted_prefixes):
    """Display file manager in sidebar"""
    st.sidebar.title("🎡 Audio & Document Manager")

    all_md = []
    all_mp3 = []
    for prefix in groups:
        for f in groups[prefix]:
            if f.endswith(".md"):
                all_md.append(f)
            elif f.endswith(".mp3"):
                all_mp3.append(f)

    top_bar = st.sidebar.columns(3)
    with top_bar[0]:
        if st.button("πŸ—‘ Del All MD"):
            for f in all_md:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[1]:
        if st.button("πŸ—‘ Del All MP3"):
            for f in all_mp3:
                os.remove(f)
            st.session_state.should_rerun = True
    with top_bar[2]:
        if st.button("⬇️ Zip All"):
            z = create_zip_of_files(all_md, all_mp3)
            if z:
                with open(z, "rb") as f:
                    b64 = base64.b64encode(f.read()).decode()
                dl_link = f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(z)}">πŸ“‚ Download {os.path.basename(z)}</a>'
                st.sidebar.markdown(dl_link,unsafe_allow_html=True)

    for prefix in sorted_prefixes:
        files = groups[prefix]
        kw = extract_keywords_from_md(files)
        keywords_str = " ".join(kw) if kw else "No Keywords"
        with st.sidebar.expander(f"{prefix} Files ({len(files)}) - Keywords: {keywords_str}", expanded=True):
            c1,c2 = st.columns(2)
            with c1:
                if st.button("πŸ‘€View Group", key="view_group_"+prefix):
                    st.session_state.viewing_prefix = prefix
            with c2:
                if st.button("πŸ—‘Del Group", key="del_group_"+prefix):
                    for f in files:
                        os.remove(f)
                    st.success(f"Deleted all files in group {prefix} successfully!")
                    st.session_state.should_rerun = True

            for f in files:
                fname = os.path.basename(f)
                ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
                st.write(f"**{fname}** - {ctime}")

# 11. New create_file function
context = {}  # Execution context for code blocks

def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return

    base_filename, ext = os.path.splitext(filename)
    combined_content = ""

    # Add Prompt with markdown title and emoji
    combined_content += "# Prompt πŸ“\n" + prompt + "\n\n"

    # Add Response with markdown title and emoji
    combined_content += "# Response πŸ’¬\n" + response + "\n\n"

    # Check for code blocks in the response
    resources = re.findall(r"```([\s\S]*?)```", response)
    for resource in resources:
        # Check if the resource contains Python code
        if "python" in resource.lower():
            cleaned_code = re.sub(r'^\s*python', '', resource, flags=re.IGNORECASE | re.MULTILINE)

            # Add Code Results title with markdown and emoji
            combined_content += "# Code Results πŸš€\n"

            original_stdout = sys.stdout
            sys.stdout = io.StringIO()

            try:
                exec(cleaned_code, context)
                code_output = sys.stdout.getvalue()
                combined_content += f"```\n{code_output}\n```\n\n"
                realtimeEvalResponse = "# Code Results πŸš€\n" + "```" + code_output + "```\n\n"
                st.code(realtimeEvalResponse)
            except Exception as e:
                combined_content += f"```python\nError executing Python code: {e}\n```\n\n"

            sys.stdout = original_stdout
        else:
            # Add non-Python resources with markdown and emoji
            combined_content += "# Resource πŸ› οΈ\n" + "```" + resource + "```\n\n"

    # Save the combined content to a Markdown file
    if should_save:
        with open(f"{base_filename}.md", 'w') as file:
            file.write(combined_content)
            st.code(combined_content)

    # Create a Base64 encoded link for the file
    with open(f"{base_filename}.md", 'rb') as file:
        encoded_file = base64.b64encode(file.read()).decode()
        href = f'<a href="data:file/markdown;base64,{encoded_file}" download="{filename}">Download File πŸ“„</a>'
        st.markdown(href, unsafe_allow_html=True)

# 12. Main Application
def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI")
    tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True)

    mycomponent = components.declare_component("mycomponent", path="mycomponent")
    val = mycomponent(my_input_value="Hello")

    # Show input in a text box for editing if detected
    if val:
        val_stripped = val.replace('\n', ' ')
        edited_input = st.text_area("Edit your detected input:", value=val_stripped, height=100)
        run_option = st.selectbox("Select AI Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
        col1, col2 = st.columns(2)
        with col1:
            autorun = st.checkbox("AutoRun on input change", value=False)
        with col2:
            full_audio = st.checkbox("Generate Complete Audio", value=False, 
                                   help="Generate audio for the complete response including all papers and summaries")

        input_changed = (val != st.session_state.old_val)

        if autorun and input_changed:
            st.session_state.old_val = val
            if run_option == "Arxiv":
                perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, 
                                titles_summary=True, full_audio=full_audio)
            else:
                if run_option == "GPT-4o":
                    process_with_gpt(edited_input)
                elif run_option == "Claude-3.5":
                    process_with_claude(edited_input)
        else:
            if st.button("Process Input"):
                st.session_state.old_val = val
                if run_option == "Arxiv":
                    perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False, 
                                    titles_summary=True, full_audio=full_audio)
                else:
                    if run_option == "GPT-4o":
                        process_with_gpt(edited_input)
                    elif run_option == "Claude-3.5":
                        process_with_claude(edited_input)

    if tab_main == "πŸ” Search ArXiv":
        st.subheader("πŸ” Search ArXiv")
        q = st.text_input("Research query:")

        st.markdown("### πŸŽ›οΈ Audio Generation Options")
        vocal_summary = st.checkbox("πŸŽ™οΈ Vocal Summary (Short Answer)", value=True)
        extended_refs = st.checkbox("πŸ“œ Extended References & Summaries (Long)", value=False)
        titles_summary = st.checkbox("πŸ”– Paper Titles Only", value=True)
        full_audio = st.checkbox("πŸ“š Generate Complete Audio Response", value=False,
                               help="Generate audio for the complete response including all papers and summaries")

        if q and st.button("Run ArXiv Query"):
            perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, 
                            titles_summary=titles_summary, full_audio=full_audio)

    elif tab_main == "🎀 Voice Input":
        st.subheader("🎀 Voice Recognition")
        user_text = st.text_area("Message:", height=100)
        user_text = user_text.strip().replace('\n', ' ')
        if st.button("Send πŸ“¨"):
            process_with_gpt(user_text)
        st.subheader("πŸ“œ Chat History")
        t1,t2=st.tabs(["Claude History","GPT-4o History"])
        with t1:
            for c in st.session_state.chat_history:
                st.write("**You:**", c["user"])
                st.write("**Claude:**", c["claude"])
        with t2:
            for m in st.session_state.messages:
                with st.chat_message(m["role"]):
                    st.markdown(m["content"])

    elif tab_main == "πŸ“Έ Media Gallery":
        st.header("🎬 Media Gallery - Images and Videos")
        tabs = st.tabs(["πŸ–ΌοΈ Images", "πŸŽ₯ Video"])
        with tabs[0]:
            imgs = glob.glob("*.png")+glob.glob("*.jpg")
            if imgs:
                c = st.slider("Cols",1,5,3)
                cols = st.columns(c)
                for i,f in enumerate(imgs):
                    with cols[i%c]:
                        st.image(Image.open(f),use_container_width=True)
                        if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
                            a = process_image(f,"Describe this image.")
                            st.markdown(a)
            else:
                st.write("No images found.")
        with tabs[1]:
            vids = glob.glob("*.mp4")
            if vids:
                for v in vids:
                    with st.expander(f"πŸŽ₯ {os.path.basename(v)}"):
                        st.video(v)
                        if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
                            a = process_video_with_gpt(v,"Describe video.")
                            st.markdown(a)
            else:
                st.write("No videos found.")

    elif tab_main == "πŸ“ File Editor":
        if getattr(st.session_state,'current_file',None):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_text = st.text_area("Content:", st.session_state.file_content, height=300)
            if st.button("Save"):
                with open(st.session_state.current_file,'w',encoding='utf-8') as f:
                    f.write(new_text)
                st.success("Updated!")
                st.session_state.should_rerun = True
        else:
            st.write("Select a file from the sidebar to edit.")

    groups, sorted_prefixes = load_files_for_sidebar()
    display_file_manager_sidebar(groups, sorted_prefixes)

    if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
        st.write("---")
        st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
        for f in groups[st.session_state.viewing_prefix]:
            fname = os.path.basename(f)
            ext = os.path.splitext(fname)[1].lower().strip('.')
            st.write(f"### {fname}")
            if ext == "md":
                content = open(f,'r',encoding='utf-8').read()
                st.markdown(content)
            elif ext == "mp3":
                st.audio(f)
            else:
                with open(f, "rb") as file:
                    b64 = base64.b64encode(file.read()).decode()
                dl_link = f'<a href="data:file/{ext};base64,{b64}" download="{fname}">Download {fname}</a>'
                st.markdown(dl_link, unsafe_allow_html=True)
        if st.button("Close Group View"):
            st.session_state.viewing_prefix = None

    if st.session_state.should_rerun:
        st.session_state.should_rerun = False
        st.rerun()

if __name__=="__main__":
    main()