Spaces:
Sleeping
Sleeping
File size: 13,832 Bytes
37112c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
# π§ Config & Setup
st.set_page_config(
page_title="π²BikeAIπ Claude/GPT Research",
page_icon="π²π",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "π²BikeAIπ Claude/GPT Research AI"
}
)
load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY') or st.secrets['OPENAI_API_KEY']
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3") or st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
st.session_state.setdefault('transcript_history', [])
st.session_state.setdefault('chat_history', [])
st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13")
st.session_state.setdefault('messages', [])
st.session_state.setdefault('last_voice_input', "")
# π¨ Minimal Custom CSS
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
</style>
""", unsafe_allow_html=True)
# π Common Utilities
def generate_filename(prompt, file_type="md"):
ctz = pytz.timezone('US/Central')
date_str = datetime.now(ctz).strftime("%m%d_%H%M")
safe = re.sub(r'[<>:"/\\\\|?*\n]', ' ', prompt)
safe = re.sub(r'\s+', ' ', safe).strip()[:90]
return f"{date_str}_{safe}.{file_type}"
def create_file(filename, prompt, response):
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
def get_download_link(file):
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>'
@st.cache_resource
def speech_synthesis_html(result):
html_code = f"""
<html><body>
<script>
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
window.speechSynthesis.speak(msg);
</script>
</body></html>
"""
components.html(html_code, height=0)
def process_image(image_path, user_prompt):
with open(image_path, "rb") as imgf:
image_data = imgf.read()
b64img = base64.b64encode(image_data).decode("utf-8")
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
]}
],
temperature=0.0,
)
return resp.choices[0].message.content
def process_audio(audio_path):
with open(audio_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
st.session_state.messages.append({"role": "user", "content": transcription.text})
return transcription.text
def process_video(video_path, seconds_per_frame=1):
vid = cv2.VideoCapture(video_path)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vid.get(cv2.CAP_PROP_FPS)
skip = int(fps*seconds_per_frame)
frames_b64 = []
for i in range(0, total, skip):
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = vid.read()
if not ret: break
_, buf = cv2.imencode(".jpg", frame)
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
vid.release()
return frames_b64
def process_video_with_gpt(video_path, prompt):
frames = process_video(video_path)
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role":"system","content":"Analyze video frames."},
{"role":"user","content":[
{"type":"text","text":prompt},
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
]}
]
)
return resp.choices[0].message.content
def search_arxiv(query):
st.write("π Searching ArXiv...")
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm")
st.markdown("### Mistral-8x7B-Instruct-v0.1 Result")
st.markdown(r1)
r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm")
st.markdown("### Mistral-7B-Instruct-v0.2 Result")
st.markdown(r2)
return f"{r1}\n\n{r2}"
def perform_ai_lookup(q):
start = time.time()
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
refs = r[0]
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
result = f"### π {q}\n\n{r2}\n\n{refs}"
speech_synthesis_html(r2)
st.markdown(result)
elapsed = time.time()-start
st.write(f"Elapsed: {elapsed:.2f} s")
fn = generate_filename(q,"md")
create_file(fn,q,result)
return result
def process_with_gpt(text):
if not text: return
st.session_state.messages.append({"role":"user","content":text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
c = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages,
stream=False
)
ans = c.choices[0].message.content
st.write("GPT-4o: " + ans)
create_file(generate_filename(text,"md"),text,ans)
st.session_state.messages.append({"role":"assistant","content":ans})
return ans
def process_with_claude(text):
if not text: return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
r = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role":"user","content":text}]
)
ans = r.content[0].text
st.write("Claude: " + ans)
create_file(generate_filename(text,"md"),text,ans)
st.session_state.chat_history.append({"user":text,"claude":ans})
return ans
def create_zip_of_files(files):
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in files: z.write(f)
return zip_name
def get_media_html(p,typ="video",w="100%"):
d = base64.b64encode(open(p,'rb').read()).decode()
if typ=="video":
return f'<video width="{w}" controls autoplay muted loop><source src="data:video/mp4;base64,{d}" type="video/mp4"></video>'
else:
return f'<audio controls style="width:{w};"><source src="data:audio/mpeg;base64,{d}" type="audio/mpeg"></audio>'
def create_media_gallery():
st.header("π¬ Media Gallery")
tabs = st.tabs(["πΌοΈ Images", "π΅ Audio", "π₯ Video"])
with tabs[0]:
imgs = glob.glob("*.png")+glob.glob("*.jpg")
if imgs:
c = st.slider("Cols",1,5,3)
cols = st.columns(c)
for i,f in enumerate(imgs):
with cols[i%c]:
st.image(Image.open(f),use_container_width=True)
if st.button(f"π Analyze {os.path.basename(f)}"):
a = process_image(f,"Describe this image.")
st.markdown(a)
with tabs[1]:
auds = glob.glob("*.mp3")+glob.glob("*.wav")
for a in auds:
with st.expander(f"π΅ {os.path.basename(a)}"):
st.markdown(get_media_html(a,"audio"),unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(a)}"):
t = process_audio(a)
st.write(t)
with tabs[2]:
vids = glob.glob("*.mp4")
for v in vids:
with st.expander(f"π₯ {os.path.basename(v)}"):
st.markdown(get_media_html(v,"video"),unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(v)}"):
a = process_video_with_gpt(v,"Describe video.")
st.markdown(a)
def display_file_manager():
st.sidebar.title("π File Management")
files = sorted(glob.glob("*.md"),reverse=True)
if st.sidebar.button("π Delete All"):
for f in files: os.remove(f)
st.experimental_rerun()
if st.sidebar.button("β¬οΈ Download All"):
z= create_zip_of_files(files)
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for f in files:
col1,col2,col3,col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("π",key="v"+f):
st.session_state.current_file=f
c=open(f,'r',encoding='utf-8').read()
st.write(c)
with col2:
st.markdown(get_download_link(f),unsafe_allow_html=True)
with col3:
if st.button("π",key="e"+f):
st.session_state.current_file=f
st.session_state.file_content=open(f,'r',encoding='utf-8').read()
with col4:
if st.button("π",key="d"+f):
os.remove(f)
st.experimental_rerun()
def main():
st.sidebar.markdown("### π²BikeAIπ Multi-Agent Research AI")
tab_main = st.radio("Action:",["π€ Voice Input","πΈ Media Gallery","π Search ArXiv","π File Editor"],horizontal=True)
model_choice = st.sidebar.radio("AI Model:",["GPT+Claude+Arxiv","GPT-4o","Claude-3"])
# Speech-to-Text component placeholder (example)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello")
if val:
user_input = val
if model_choice == "GPT-4o":
process_with_gpt(user_input)
elif model_choice == "Claude-3":
process_with_claude(user_input)
else:
col1,col2,col3=st.columns(3)
with col1:
st.subheader("GPT-4o Omni:")
try: process_with_gpt(user_input)
except: st.write('GPT 4o error')
with col2:
st.subheader("Claude-3 Sonnet:")
try: process_with_claude(user_input)
except: st.write('Claude error')
with col3:
st.subheader("Arxiv + Mistral:")
try:
r = perform_ai_lookup(user_input)
st.markdown(r)
except:
st.write("Arxiv error")
if tab_main == "π€ Voice Input":
st.subheader("π€ Voice Recognition")
user_text = st.text_area("Message:", height=100)
if st.button("Send π¨"):
if user_text:
if model_choice == "GPT-4o":
process_with_gpt(user_text)
elif model_choice == "Claude-3":
process_with_claude(user_text)
else:
col1,col2,col3=st.columns(3)
with col1:
st.subheader("GPT-4o Omni:")
process_with_gpt(user_text)
with col2:
st.subheader("Claude-3 Sonnet:")
process_with_claude(user_text)
with col3:
st.subheader("Arxiv & Mistral:")
res = perform_ai_lookup(user_text)
st.markdown(res)
st.subheader("π Chat History")
t1,t2=st.tabs(["Claude History","GPT-4o History"])
with t1:
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Claude:**", c["claude"])
with t2:
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
elif tab_main == "πΈ Media Gallery":
create_media_gallery()
elif tab_main == "π Search ArXiv":
q=st.text_input("Research query:")
if q:
r=search_arxiv(q)
st.markdown(r)
elif tab_main == "π File Editor":
if getattr(st.session_state,'current_file',None):
st.subheader(f"Editing: {st.session_state.current_file}")
new_text = st.text_area("Content:", st.session_state.file_content, height=300)
if st.button("Save"):
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
f.write(new_text)
st.success("Updated!")
display_file_manager()
if __name__=="__main__":
main()
|