File size: 13,832 Bytes
37112c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx

# πŸ”§ Config & Setup
st.set_page_config(
    page_title="🚲BikeAIπŸ† Claude/GPT Research",
    page_icon="πŸš²πŸ†",
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': 'https://huggingface.co/awacke1',
        'Report a bug': 'https://huggingface.co/spaces/awacke1',
        'About': "🚲BikeAIπŸ† Claude/GPT Research AI"
    }
)
load_dotenv()
openai.api_key = os.getenv('OPENAI_API_KEY') or st.secrets['OPENAI_API_KEY']
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3") or st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')

st.session_state.setdefault('transcript_history', [])
st.session_state.setdefault('chat_history', [])
st.session_state.setdefault('openai_model', "gpt-4o-2024-05-13")
st.session_state.setdefault('messages', [])
st.session_state.setdefault('last_voice_input', "")

# 🎨 Minimal Custom CSS
st.markdown("""
<style>
    .main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
    .stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
</style>
""", unsafe_allow_html=True)

# πŸ”‘ Common Utilities
def generate_filename(prompt, file_type="md"):
    ctz = pytz.timezone('US/Central')
    date_str = datetime.now(ctz).strftime("%m%d_%H%M")
    safe = re.sub(r'[<>:"/\\\\|?*\n]', ' ', prompt)
    safe = re.sub(r'\s+', ' ', safe).strip()[:90]
    return f"{date_str}_{safe}.{file_type}"

def create_file(filename, prompt, response):
    with open(filename, 'w', encoding='utf-8') as f:
        f.write(prompt + "\n\n" + response)

def get_download_link(file):
    with open(file, "rb") as f:
        b64 = base64.b64encode(f.read()).decode()
    return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">πŸ“‚ Download {os.path.basename(file)}</a>'

@st.cache_resource
def speech_synthesis_html(result):
    html_code = f"""
    <html><body>
    <script>
    var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
    window.speechSynthesis.speak(msg);
    </script>
    </body></html>
    """
    components.html(html_code, height=0)

def process_image(image_path, user_prompt):
    with open(image_path, "rb") as imgf:
        image_data = imgf.read()
    b64img = base64.b64encode(image_data).decode("utf-8")
    resp = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
            ]}
        ],
        temperature=0.0,
    )
    return resp.choices[0].message.content

def process_audio(audio_path):
    with open(audio_path, "rb") as f:
        transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
    st.session_state.messages.append({"role": "user", "content": transcription.text})
    return transcription.text

def process_video(video_path, seconds_per_frame=1):
    vid = cv2.VideoCapture(video_path)
    total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vid.get(cv2.CAP_PROP_FPS)
    skip = int(fps*seconds_per_frame)
    frames_b64 = []
    for i in range(0, total, skip):
        vid.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = vid.read()
        if not ret: break
        _, buf = cv2.imencode(".jpg", frame)
        frames_b64.append(base64.b64encode(buf).decode("utf-8"))
    vid.release()
    return frames_b64

def process_video_with_gpt(video_path, prompt):
    frames = process_video(video_path)
    resp = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role":"system","content":"Analyze video frames."},
            {"role":"user","content":[
                {"type":"text","text":prompt},
                *[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
            ]}
        ]
    )
    return resp.choices[0].message.content

def search_arxiv(query):
    st.write("πŸ” Searching ArXiv...")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    r1 = client.predict(prompt=query, llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1", stream_outputs=True, api_name="/ask_llm")
    st.markdown("### Mistral-8x7B-Instruct-v0.1 Result")
    st.markdown(r1)
    r2 = client.predict(prompt=query, llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2", stream_outputs=True, api_name="/ask_llm")
    st.markdown("### Mistral-7B-Instruct-v0.2 Result")
    st.markdown(r2)
    return f"{r1}\n\n{r2}"

def perform_ai_lookup(q):
    start = time.time()
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    r = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")
    refs = r[0]
    r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
    result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}"
    speech_synthesis_html(r2)
    st.markdown(result)
    elapsed = time.time()-start
    st.write(f"Elapsed: {elapsed:.2f} s")
    fn = generate_filename(q,"md")
    create_file(fn,q,result)
    return result

def process_with_gpt(text):
    if not text: return
    st.session_state.messages.append({"role":"user","content":text})
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        c = openai_client.chat.completions.create(
            model=st.session_state["openai_model"],
            messages=st.session_state.messages,
            stream=False
        )
        ans = c.choices[0].message.content
        st.write("GPT-4o: " + ans)
        create_file(generate_filename(text,"md"),text,ans)
        st.session_state.messages.append({"role":"assistant","content":ans})
        return ans

def process_with_claude(text):
    if not text: return
    with st.chat_message("user"):
        st.markdown(text)
    with st.chat_message("assistant"):
        r = claude_client.messages.create(
            model="claude-3-sonnet-20240229",
            max_tokens=1000,
            messages=[{"role":"user","content":text}]
        )
        ans = r.content[0].text
        st.write("Claude: " + ans)
        create_file(generate_filename(text,"md"),text,ans)
        st.session_state.chat_history.append({"user":text,"claude":ans})
        return ans

def create_zip_of_files(files):
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name,'w') as z:
        for f in files: z.write(f)
    return zip_name

def get_media_html(p,typ="video",w="100%"):
    d = base64.b64encode(open(p,'rb').read()).decode()
    if typ=="video":
        return f'<video width="{w}" controls autoplay muted loop><source src="data:video/mp4;base64,{d}" type="video/mp4"></video>'
    else:
        return f'<audio controls style="width:{w};"><source src="data:audio/mpeg;base64,{d}" type="audio/mpeg"></audio>'

def create_media_gallery():
    st.header("🎬 Media Gallery")
    tabs = st.tabs(["πŸ–ΌοΈ Images", "🎡 Audio", "πŸŽ₯ Video"])
    with tabs[0]:
        imgs = glob.glob("*.png")+glob.glob("*.jpg")
        if imgs:
            c = st.slider("Cols",1,5,3)
            cols = st.columns(c)
            for i,f in enumerate(imgs):
                with cols[i%c]:
                    st.image(Image.open(f),use_container_width=True)
                    if st.button(f"πŸ‘€ Analyze {os.path.basename(f)}"):
                        a = process_image(f,"Describe this image.")
                        st.markdown(a)
    with tabs[1]:
        auds = glob.glob("*.mp3")+glob.glob("*.wav")
        for a in auds:
            with st.expander(f"🎡 {os.path.basename(a)}"):
                st.markdown(get_media_html(a,"audio"),unsafe_allow_html=True)
                if st.button(f"Transcribe {os.path.basename(a)}"):
                    t = process_audio(a)
                    st.write(t)
    with tabs[2]:
        vids = glob.glob("*.mp4")
        for v in vids:
            with st.expander(f"πŸŽ₯ {os.path.basename(v)}"):
                st.markdown(get_media_html(v,"video"),unsafe_allow_html=True)
                if st.button(f"Analyze {os.path.basename(v)}"):
                    a = process_video_with_gpt(v,"Describe video.")
                    st.markdown(a)

def display_file_manager():
    st.sidebar.title("πŸ“ File Management")
    files = sorted(glob.glob("*.md"),reverse=True)
    if st.sidebar.button("πŸ—‘ Delete All"):
        for f in files: os.remove(f)
        st.experimental_rerun()
    if st.sidebar.button("⬇️ Download All"):
        z= create_zip_of_files(files)
        st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
    for f in files:
        col1,col2,col3,col4 = st.sidebar.columns([1,3,1,1])
        with col1:
            if st.button("🌐",key="v"+f):
                st.session_state.current_file=f
                c=open(f,'r',encoding='utf-8').read()
                st.write(c)
        with col2:
            st.markdown(get_download_link(f),unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚",key="e"+f):
                st.session_state.current_file=f
                st.session_state.file_content=open(f,'r',encoding='utf-8').read()
        with col4:
            if st.button("πŸ—‘",key="d"+f):
                os.remove(f)
                st.experimental_rerun()

def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Multi-Agent Research AI")
    tab_main = st.radio("Action:",["🎀 Voice Input","πŸ“Έ Media Gallery","πŸ” Search ArXiv","πŸ“ File Editor"],horizontal=True)
    model_choice = st.sidebar.radio("AI Model:",["GPT+Claude+Arxiv","GPT-4o","Claude-3"])

    # Speech-to-Text component placeholder (example)
    mycomponent = components.declare_component("mycomponent", path="mycomponent")
    val = mycomponent(my_input_value="Hello")
    if val:
        user_input = val
        if model_choice == "GPT-4o":
            process_with_gpt(user_input)
        elif model_choice == "Claude-3":
            process_with_claude(user_input)
        else:
            col1,col2,col3=st.columns(3)
            with col1:
                st.subheader("GPT-4o Omni:")
                try: process_with_gpt(user_input)
                except: st.write('GPT 4o error')
            with col2:
                st.subheader("Claude-3 Sonnet:")
                try: process_with_claude(user_input)
                except: st.write('Claude error')
            with col3:
                st.subheader("Arxiv + Mistral:")
                try:
                    r = perform_ai_lookup(user_input)
                    st.markdown(r)
                except:
                    st.write("Arxiv error")

    if tab_main == "🎀 Voice Input":
        st.subheader("🎀 Voice Recognition")
        user_text = st.text_area("Message:", height=100)
        if st.button("Send πŸ“¨"):
            if user_text:
                if model_choice == "GPT-4o":
                    process_with_gpt(user_text)
                elif model_choice == "Claude-3":
                    process_with_claude(user_text)
                else:
                    col1,col2,col3=st.columns(3)
                    with col1:
                        st.subheader("GPT-4o Omni:")
                        process_with_gpt(user_text)
                    with col2:
                        st.subheader("Claude-3 Sonnet:")
                        process_with_claude(user_text)
                    with col3:
                        st.subheader("Arxiv & Mistral:")
                        res = perform_ai_lookup(user_text)
                        st.markdown(res)
        st.subheader("πŸ“œ Chat History")
        t1,t2=st.tabs(["Claude History","GPT-4o History"])
        with t1:
            for c in st.session_state.chat_history:
                st.write("**You:**", c["user"])
                st.write("**Claude:**", c["claude"])
        with t2:
            for m in st.session_state.messages:
                with st.chat_message(m["role"]):
                    st.markdown(m["content"])

    elif tab_main == "πŸ“Έ Media Gallery":
        create_media_gallery()

    elif tab_main == "πŸ” Search ArXiv":
        q=st.text_input("Research query:")
        if q:
            r=search_arxiv(q)
            st.markdown(r)

    elif tab_main == "πŸ“ File Editor":
        if getattr(st.session_state,'current_file',None):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_text = st.text_area("Content:", st.session_state.file_content, height=300)
            if st.button("Save"):
                with open(st.session_state.current_file,'w',encoding='utf-8') as f:
                    f.write(new_text)
                st.success("Updated!")

    display_file_manager()

if __name__=="__main__":
    main()