File size: 45,194 Bytes
58498fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
import streamlit as st
import anthropic
import openai
import base64
from datetime import datetime
import plotly.graph_objects as go
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit.components.v1 as components
import textract
import time
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client, handle_file
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy.editor import VideoFileClip
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI

# 1. Configuration and Setup
Site_Name = '🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI'
title = "🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = 'πŸš²πŸ†'

st.set_page_config(
    page_title=title,
    page_icon=icons,
    layout="wide",
    initial_sidebar_state="auto",
    menu_items={
        'Get Help': helpURL,
        'Report a bug': bugURL,
        'About': title
    }
)

# 2. Load environment variables and initialize clients
load_dotenv()

# OpenAI setup
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None:
    openai.api_key = st.secrets['OPENAI_API_KEY']

openai_client = OpenAI(
    api_key=os.getenv('OPENAI_API_KEY'),
    organization=os.getenv('OPENAI_ORG_ID')
)

# 3. Claude setup
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3")
if anthropic_key == None:
    anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)

# 4. Initialize session states
if 'transcript_history' not in st.session_state:
    st.session_state.transcript_history = []
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-4o-2024-05-13"
if "messages" not in st.session_state:
    st.session_state.messages = []
if 'last_voice_input' not in st.session_state:
    st.session_state.last_voice_input = ""

# 5. # HuggingFace setup
API_URL = os.getenv('API_URL')
HF_KEY = os.getenv('HF_KEY')
MODEL1 = "meta-llama/Llama-2-7b-chat-hf"
MODEL2 = "openai/whisper-small.en"

headers = {
    "Authorization": f"Bearer {HF_KEY}",
    "Content-Type": "application/json"
}

# Initialize session states
if "chat_history" not in st.session_state:
    st.session_state.chat_history = []
if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-4o-2024-05-13"
if "messages" not in st.session_state:
    st.session_state.messages = []

# Custom CSS
st.markdown("""
<style>
    .main {
        background: linear-gradient(to right, #1a1a1a, #2d2d2d);
        color: #ffffff;
    }
    .stMarkdown {
        font-family: 'Helvetica Neue', sans-serif;
    }
    .category-header {
        background: linear-gradient(45deg, #2b5876, #4e4376);
        padding: 20px;
        border-radius: 10px;
        margin: 10px 0;
    }
    .scene-card {
        background: rgba(0,0,0,0.3);
        padding: 15px;
        border-radius: 8px;
        margin: 10px 0;
        border: 1px solid rgba(255,255,255,0.1);
    }
    .media-gallery {
        display: grid;
        gap: 1rem;
        padding: 1rem;
    }
    .bike-card {
        background: rgba(255,255,255,0.05);
        border-radius: 10px;
        padding: 15px;
        transition: transform 0.3s;
    }
    .bike-card:hover {
        transform: scale(1.02);
    }
</style>
""", unsafe_allow_html=True)


# Bike Collections
bike_collections = {
    "Celestial Collection 🌌": {
        "Eclipse Vaulter": {
            "prompt": """Cinematic shot of a sleek black mountain bike silhouetted against a total solar eclipse. 
                     The corona creates an ethereal halo effect, with lens flares accentuating key points of the frame.
                     Dynamic composition shows the bike mid-leap, with stardust particles trailing behind.
                     Camera angle: Low angle, wide shot
                     Lighting: Dramatic rim lighting from eclipse
                     Color palette: Deep purples, cosmic blues, corona gold""",
            "emoji": "πŸŒ‘"
        },
        "Starlight Leaper": {
            "prompt": """A black bike performing an epic leap under a vast Milky Way galaxy.
                     Shimmering stars blanket the sky while the bike's wheels leave a trail of stardust.
                     Camera angle: Wide-angle upward shot
                     Lighting: Natural starlight with subtle rim lighting
                     Color palette: Deep blues, silver highlights, cosmic purples""",
            "emoji": "✨"
        },
        "Moonlit Hopper": {
            "prompt": """A sleek black bike mid-hop over a moonlit meadow,
                     the full moon illuminating the misty surroundings. Fireflies dance around the bike,
                     and soft shadows create a serene yet dynamic atmosphere.
                     Camera angle: Side profile with slight low angle
                     Lighting: Soft moonlight with atmospheric fog
                     Color palette: Silver blues, soft whites, deep shadows""",
            "emoji": "πŸŒ™"
        }
    },
    "Nature-Inspired Collection 🌲": {
        "Shadow Grasshopper": {
            "prompt": """A black bike jumping between forest paths,
                     with dappled sunlight streaming through the canopy. Shadows dance on the bike's frame
                     as it soars above mossy logs.
                     Camera angle: Through-the-trees tracking shot
                     Lighting: Natural forest lighting with sun rays
                     Color palette: Forest greens, golden sunlight, deep shadows""",
            "emoji": "πŸ¦—"
        },
        "Onyx Leapfrog": {
            "prompt": """A bike with obsidian-black finish jumping over a sparkling creek,
                     the reflection on the water broken into ripples by the leap. The surrounding forest
                     is vibrant with greens and browns.
                     Camera angle: Low angle from water level
                     Lighting: Golden hour side lighting
                     Color palette: Deep blacks, water blues, forest greens""",
            "emoji": "🐸"
        }
    }
}


# Helper Functions
def generate_filename(prompt, file_type):
    """Generate a safe filename using the prompt and file type."""
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
    safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"




# Function to create and save a file (and avoid the black hole of lost data πŸ•³)
def create_file(filename, prompt, response, should_save=True):
    if not should_save:
        return
    with open(filename, 'w', encoding='utf-8') as file:
        file.write(prompt + "\n\n" + response)



def create_and_save_file(content, file_type="md", prompt=None, is_image=False, should_save=True):
    """Create and save file with proper handling of different types."""
    if not should_save:
        return None
    filename = generate_filename(prompt if prompt else content, file_type)
    with open(filename, "w", encoding="utf-8") as f:
        if is_image:
            f.write(content)
        else:
            f.write(prompt + "\n\n" + content if prompt else content)
    return filename

def get_download_link(file_path):
    """Create download link for file."""
    with open(file_path, "rb") as file:
        contents = file.read()
    b64 = base64.b64encode(contents).decode()
    return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}πŸ“‚</a>'

@st.cache_resource
def SpeechSynthesis(result):
    """HTML5 Speech Synthesis."""
    documentHTML5 = f'''
    <!DOCTYPE html>
    <html>
    <head>
        <title>Read It Aloud</title>
        <script type="text/javascript">
            function readAloud() {{
                const text = document.getElementById("textArea").value;
                const speech = new SpeechSynthesisUtterance(text);
                window.speechSynthesis.speak(speech);
            }}
        </script>
    </head>
    <body>
        <h1>πŸ”Š Read It Aloud</h1>
        <textarea id="textArea" rows="10" cols="80">{result}</textarea>
        <br>
        <button onclick="readAloud()">πŸ”Š Read Aloud</button>
    </body>
    </html>
    '''
    components.html(documentHTML5, width=1280, height=300)

# Media Processing Functions
def process_image(image_input, user_prompt):
    """Process image with GPT-4o vision."""
    if isinstance(image_input, str):
        with open(image_input, "rb") as image_file:
            image_input = image_file.read()
            
    base64_image = base64.b64encode(image_input).decode("utf-8")
    
    response = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {
                    "url": f"data:image/png;base64,{base64_image}"
                }}
            ]}
        ],
        temperature=0.0,
    )
    
    return response.choices[0].message.content

def process_audio(audio_input, text_input=''):
    """Process audio with Whisper and GPT."""
    if isinstance(audio_input, str):
        with open(audio_input, "rb") as file:
            audio_input = file.read()

    transcription = openai_client.audio.transcriptions.create(
        model="whisper-1",
        file=audio_input,
    )
    
    st.session_state.messages.append({"role": "user", "content": transcription.text})
    
    with st.chat_message("assistant"):
        st.markdown(transcription.text)
        SpeechSynthesis(transcription.text)
        
        filename = generate_filename(transcription.text, "wav")
        create_and_save_file(audio_input, "wav", transcription.text, True)

def process_video(video_path, seconds_per_frame=1):
    """Process video files for frame extraction and audio."""
    base64Frames = []
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    
    for frame_idx in range(0, total_frames, frames_to_skip):
        video.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
    
    video.release()
    
    # Extract audio
    base_video_path = os.path.splitext(video_path)[0]
    audio_path = f"{base_video_path}.mp3"
    try:
        video_clip = VideoFileClip(video_path)
        video_clip.audio.write_audiofile(audio_path)
        video_clip.close()
    except:
        st.warning("No audio track found in video")
        audio_path = None
    
    return base64Frames, audio_path

def process_video_with_gpt(video_input, user_prompt):
    """Process video with GPT-4o vision."""
    base64Frames, audio_path = process_video(video_input)
    
    response = openai_client.chat.completions.create(
        model=st.session_state["openai_model"],
        messages=[
            {"role": "system", "content": "Analyze the video frames and provide a detailed description."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                *[{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{frame}"}}
                  for frame in base64Frames]
            ]}
        ]
    )
    
    return response.choices[0].message.content


def extract_urls(text):
    try:
        date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})')
        abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)')
        pdf_link_pattern = re.compile(r'\[⬇️\]\((https://arxiv\.org/pdf/\d+\.\d+)\)')
        title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]')
        date_matches = date_pattern.findall(text)
        abs_link_matches = abs_link_pattern.findall(text)
        pdf_link_matches = pdf_link_pattern.findall(text)
        title_matches = title_pattern.findall(text)

        # markdown with the extracted fields
        markdown_text = ""
        for i in range(len(date_matches)):
            date = date_matches[i]
            title = title_matches[i]
            abs_link = abs_link_matches[i][1]
            pdf_link = pdf_link_matches[i]
            markdown_text += f"**Date:** {date}\n\n"
            markdown_text += f"**Title:** {title}\n\n"
            markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n"
            markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n"
            markdown_text += "---\n\n"
        return markdown_text
    
    except:
        st.write('.')
        return ''


def search_arxiv(query):
    
    st.write("Performing AI Lookup...")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    
    result1 = client.predict(
        prompt=query,
        llm_model_picked="mistralai/Mixtral-8x7B-Instruct-v0.1",
        stream_outputs=True,
        api_name="/ask_llm"
    )
    st.markdown("### Mixtral-8x7B-Instruct-v0.1 Result")
    st.markdown(result1)

    result2 = client.predict(
        prompt=query,
        llm_model_picked="mistralai/Mistral-7B-Instruct-v0.2",
        stream_outputs=True,
        api_name="/ask_llm"
    )
    st.markdown("### Mistral-7B-Instruct-v0.2 Result")
    st.markdown(result2)
    combined_result = f"{result1}\n\n{result2}"
    return combined_result

    #return responseall


# Function to generate a filename based on prompt and time (because names matter πŸ•’)
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    safe_prompt = re.sub(r'\W+', '_', prompt)[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# Function to create and save a file (and avoid the black hole of lost data πŸ•³)
def create_file(filename, prompt, response):
    with open(filename, 'w', encoding='utf-8') as file:
        file.write(prompt + "\n\n" + response)

    
def perform_ai_lookup(query):
    start_time = time.strftime("%Y-%m-%d %H:%M:%S")
    client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
    response1 = client.predict(
        query,
        20,
        "Semantic Search",
        "mistralai/Mixtral-8x7B-Instruct-v0.1",
        api_name="/update_with_rag_md"
    )
    Question = '### πŸ”Ž ' + query + '\r\n'  # Format for markdown display with links
    References =  response1[0]  
    ReferenceLinks = extract_urls(References)

    RunSecondQuery = True
    results=''
    if RunSecondQuery:
        # Search 2 - Retrieve the Summary with Papers Context and Original Query
        response2 = client.predict(
            query,
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            True,
            api_name="/ask_llm"
        )
        if len(response2) > 10:
            Answer = response2
            SpeechSynthesis(Answer)
            # Restructure results to follow format of Question, Answer, References, ReferenceLinks
            results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
            st.markdown(results)

    st.write('πŸ”Run of Multi-Agent System Paper Summary Spec is Complete')
    end_time = time.strftime("%Y-%m-%d %H:%M:%S")
    start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
    end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
    elapsed_seconds = end_timestamp - start_timestamp
    st.write(f"Start time: {start_time}")
    st.write(f"Finish time: {end_time}")
    st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")

    
    filename = generate_filename(query, "md")
    create_file(filename, query, results)
    return results

# Chat Processing Functions
def process_with_gpt(text_input):
    """Process text with GPT-4o."""
    if text_input:
        st.session_state.messages.append({"role": "user", "content": text_input})
        
        with st.chat_message("user"):
            st.markdown(text_input)
        
        with st.chat_message("assistant"):
            completion = openai_client.chat.completions.create(
                model=st.session_state["openai_model"],
                messages=[
                    {"role": m["role"], "content": m["content"]}
                    for m in st.session_state.messages
                ],
                stream=False
            )
            return_text = completion.choices[0].message.content
            st.write("GPT-4o: " + return_text)
            
            #filename = generate_filename(text_input, "md")
            filename = generate_filename("GPT-4o: " + return_text, "md")
            create_file(filename, text_input, return_text)
            st.session_state.messages.append({"role": "assistant", "content": return_text})
            return return_text

def process_with_claude(text_input):
    """Process text with Claude."""
    if text_input:

        with st.chat_message("user"):
            st.markdown(text_input)

        with st.chat_message("assistant"):
            response = claude_client.messages.create(
                model="claude-3-sonnet-20240229",
                max_tokens=1000,
                messages=[
                    {"role": "user", "content": text_input}
                ]
            )
            response_text = response.content[0].text
            st.write("Claude: " + response_text)
            
            #filename = generate_filename(text_input, "md")
            filename = generate_filename("Claude: " + response_text, "md")
            create_file(filename, text_input, response_text)
            
            st.session_state.chat_history.append({
                "user": text_input,
                "claude": response_text
            })
            return response_text

# File Management Functions
def load_file(file_name):
    """Load file content."""
    with open(file_name, "r", encoding='utf-8') as file:
        content = file.read()
    return content

def create_zip_of_files(files):
    """Create zip archive of files."""
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name



def get_media_html(media_path, media_type="video", width="100%"):
    """Generate HTML for media player."""
    media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
    if media_type == "video":
        return f'''
        <video width="{width}" controls autoplay muted loop>
            <source src="data:video/mp4;base64,{media_data}" type="video/mp4">
            Your browser does not support the video tag.
        </video>
        '''
    else:  # audio
        return f'''
        <audio controls style="width: {width};">
            <source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
            Your browser does not support the audio element.
        </audio>
        '''

def create_media_gallery():
    """Create the media gallery interface."""
    st.header("🎬 Media Gallery")
    
    tabs = st.tabs(["πŸ–ΌοΈ Images", "🎡 Audio", "πŸŽ₯ Video", "🎨 Scene Generator"])
    
    with tabs[0]:
        image_files = glob.glob("*.png") + glob.glob("*.jpg")
        if image_files:
            num_cols = st.slider("Number of columns", 1, 5, 3)
            cols = st.columns(num_cols)
            for idx, image_file in enumerate(image_files):
                with cols[idx % num_cols]:
                    img = Image.open(image_file)
                    st.image(img, use_container_width=True)
                    
                    # Add GPT vision analysis option
                    if st.button(f"Analyze {os.path.basename(image_file)}"):
                        analysis = process_image(image_file, 
                                              "Describe this image in detail and identify key elements.")
                        st.markdown(analysis)
    
    with tabs[1]:
        audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
        for audio_file in audio_files:
            with st.expander(f"🎡 {os.path.basename(audio_file)}"):
                st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
                if st.button(f"Transcribe {os.path.basename(audio_file)}"):
                    with open(audio_file, "rb") as f:
                        transcription = process_audio(f)
                        st.write(transcription)
    
    with tabs[2]:
        video_files = glob.glob("*.mp4")
        for video_file in video_files:
            with st.expander(f"πŸŽ₯ {os.path.basename(video_file)}"):
                st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
                if st.button(f"Analyze {os.path.basename(video_file)}"):
                    analysis = process_video_with_gpt(video_file, 
                                                    "Describe what's happening in this video.")
                    st.markdown(analysis)
    
    with tabs[3]:
        for collection_name, bikes in bike_collections.items():
            st.subheader(collection_name)
            cols = st.columns(len(bikes))
            
            for idx, (bike_name, details) in enumerate(bikes.items()):
                with cols[idx]:
                    st.markdown(f"""
                    <div class='bike-card'>
                        <h3>{details['emoji']} {bike_name}</h3>
                        <p>{details['prompt']}</p>
                    </div>
                    """, unsafe_allow_html=True)
                    
                    if st.button(f"Generate {bike_name} Scene"):
                        prompt = details['prompt']
                        # Here you could integrate with image generation API
                        st.write(f"Generated scene description for {bike_name}:")
                        st.write(prompt)

def display_file_manager():
    """Display file management sidebar with guaranteed unique button keys."""
    st.sidebar.title("πŸ“ File Management")
    
    all_files = glob.glob("*.md")
    all_files.sort(reverse=True)

    if st.sidebar.button("πŸ—‘ Delete All", key="delete_all_files_button"):
        for file in all_files:
            os.remove(file)
        st.rerun()

    if st.sidebar.button("⬇️ Download All", key="download_all_files_button"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)

    # Create unique keys using file attributes
    for idx, file in enumerate(all_files):
        # Get file stats for unique identification
        file_stat = os.stat(file)
        unique_id = f"{idx}_{file_stat.st_size}_{file_stat.st_mtime}"
        
        col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
        with col1:
            if st.button("🌐", key=f"view_{unique_id}"):
                st.session_state.current_file = file
                st.session_state.file_content = load_file(file)
        with col2:
            st.markdown(get_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key=f"edit_{unique_id}"):
                st.session_state.current_file = file
                st.session_state.file_content = load_file(file)
        with col4:
            if st.button("πŸ—‘", key=f"delete_{unique_id}"):
                os.remove(file)
                st.rerun()


def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI")
    
    # Main navigation
    tab_main = st.radio("Choose Action:", 
                        ["πŸ’¬ Chat", "πŸ“Έ Media Gallery", "πŸ” Search ArXiv", "πŸ“ File Editor"],
                        horizontal=True)
    
    if tab_main == "πŸ’¬ Chat":
        # Model Selection
        model_choice = st.sidebar.radio(
            "Choose AI Model:",
            ["GPT-4o", "Claude-3", "GPT+Claude+Arxiv"]
        )
        
        # Chat Interface
        user_input = st.text_area("Message:", height=100)
        
        if st.button("Send πŸ“¨"):
            if user_input:
                if model_choice == "GPT-4o":
                    gpt_response = process_with_gpt(user_input)
                elif model_choice == "Claude-3":
                    claude_response = process_with_claude(user_input)
                else:  # Both
                    col1, col2, col3 = st.columns(3)
                    with col2:
                        st.subheader("Claude-3.5 Sonnet:")
                        try:
                            claude_response = process_with_claude(user_input)
                        except:
                            st.write('Claude 3.5 Sonnet out of tokens.')
                    with col1:
                        st.subheader("GPT-4o Omni:")
                        try:
                            gpt_response = process_with_gpt(user_input)  
                        except:
                            st.write('GPT 4o out of tokens')
                    with col3:
                        st.subheader("Arxiv and Mistral Research:")
                        with st.spinner("Searching ArXiv..."):
                            #results = search_arxiv(user_input)
                            results = perform_ai_lookup(user_input)
                            
                            st.markdown(results)
                            
        # Display Chat History
        st.subheader("Chat History πŸ“œ")
        tab1, tab2 = st.tabs(["Claude History", "GPT-4o History"])
        
        with tab1:
            for chat in st.session_state.chat_history:
                st.text_area("You:", chat["user"], height=100)
                st.text_area("Claude:", chat["claude"], height=200)
                st.markdown(chat["claude"])
        
        with tab2:
            for message in st.session_state.messages:
                with st.chat_message(message["role"]):
                    st.markdown(message["content"])
    
    elif tab_main == "πŸ“Έ Media Gallery":
        create_media_gallery()
    
    elif tab_main == "πŸ” Search ArXiv":
        query = st.text_input("Enter your research query:")
        if query:
            with st.spinner("Searching ArXiv..."):
                results = search_arxiv(query)
                st.markdown(results)
    
    elif tab_main == "πŸ“ File Editor":
        if hasattr(st.session_state, 'current_file'):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_content = st.text_area("Content:", st.session_state.file_content, height=300)
            if st.button("Save Changes"):
                with open(st.session_state.current_file, 'w', encoding='utf-8') as file:
                    file.write(new_content)
                st.success("File updated successfully!")

    # Always show file manager in sidebar
    display_file_manager()

if __name__ == "__main__":
    main()

# Speech Recognition HTML Component
speech_recognition_html = """
<!DOCTYPE html>
<html>
<head>
    <title>Continuous Speech Demo</title>
    <style>
        body { 
            font-family: sans-serif; 
            padding: 20px; 
            max-width: 800px;
            margin: 0 auto;
        }
        button { 
            padding: 10px 20px; 
            margin: 10px 5px;
            font-size: 16px;
        }
        #status { 
            margin: 10px 0;
            padding: 10px;
            background: #e8f5e9;
            border-radius: 4px;
        }
        #output {
            white-space: pre-wrap;
            padding: 15px;
            background: #f5f5f5;
            border-radius: 4px;
            margin: 10px 0;
            min-height: 100px;
            max-height: 400px;
            overflow-y: auto;
        }
        .controls {
            margin: 10px 0;
        }
    </style>
</head>
<body>
    <div class="controls">
        <button id="start">Start Listening</button>
        <button id="stop" disabled>Stop Listening</button>
        <button id="clear">Clear Text</button>
    </div>
    <div id="status">Ready</div>
    <div id="output"></div>

    <script>
        if (!('webkitSpeechRecognition' in window)) {
            alert('Speech recognition not supported');
        } else {
            const recognition = new webkitSpeechRecognition();
            const startButton = document.getElementById('start');
            const stopButton = document.getElementById('stop');
            const clearButton = document.getElementById('clear');
            const status = document.getElementById('status');
            const output = document.getElementById('output');
            let fullTranscript = '';
            let lastUpdateTime = Date.now();

            // Configure recognition
            recognition.continuous = true;
            recognition.interimResults = true;

            // Function to start recognition
            const startRecognition = () => {
                try {
                    recognition.start();
                    status.textContent = 'Listening...';
                    startButton.disabled = true;
                    stopButton.disabled = false;
                } catch (e) {
                    console.error(e);
                    status.textContent = 'Error: ' + e.message;
                }
            };

            // Auto-start on load
            window.addEventListener('load', () => {
                setTimeout(startRecognition, 1000);
            });

            startButton.onclick = startRecognition;

            stopButton.onclick = () => {
                recognition.stop();
                status.textContent = 'Stopped';
                startButton.disabled = false;
                stopButton.disabled = true;
            };

            clearButton.onclick = () => {
                fullTranscript = '';
                output.textContent = '';
                window.parent.postMessage({
                    type: 'clear_transcript',
                }, '*');
            };

            recognition.onresult = (event) => {
                let interimTranscript = '';
                let finalTranscript = '';

                for (let i = event.resultIndex; i < event.results.length; i++) {
                    const transcript = event.results[i][0].transcript;
                    if (event.results[i].isFinal) {
                        finalTranscript += transcript + '\\n';
                    } else {
                        interimTranscript += transcript;
                    }
                }

                if (finalTranscript || (Date.now() - lastUpdateTime > 5000)) {
                    if (finalTranscript) {
                        fullTranscript += finalTranscript;
                        // Send to Streamlit
                        window.parent.postMessage({
                            type: 'final_transcript',
                            text: finalTranscript
                        }, '*');
                    }
                    lastUpdateTime = Date.now();
                }

                output.textContent = fullTranscript + (interimTranscript ? '... ' + interimTranscript : '');
                output.scrollTop = output.scrollHeight;
            };

            recognition.onend = () => {
                if (!stopButton.disabled) {
                    try {
                        recognition.start();
                        console.log('Restarted recognition');
                    } catch (e) {
                        console.error('Failed to restart recognition:', e);
                        status.textContent = 'Error restarting: ' + e.message;
                        startButton.disabled = false;
                        stopButton.disabled = true;
                    }
                }
            };

            recognition.onerror = (event) => {
                console.error('Recognition error:', event.error);
                status.textContent = 'Error: ' + event.error;
                
                if (event.error === 'not-allowed' || event.error === 'service-not-allowed') {
                    startButton.disabled = false;
                    stopButton.disabled = true;
                }
            };
        }
    </script>
</body>
</html>
"""

# Helper Functions
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
    safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# File Management Functions
def load_file(file_name):
    """Load file content."""
    with open(file_name, "r", encoding='utf-8') as file:
        content = file.read()
    return content

def create_zip_of_files(files):
    """Create zip archive of files."""
    zip_name = "all_files.zip"
    with zipfile.ZipFile(zip_name, 'w') as zipf:
        for file in files:
            zipf.write(file)
    return zip_name

def get_download_link(file):
    """Create download link for file."""
    with open(file, "rb") as f:
        contents = f.read()
    b64 = base64.b64encode(contents).decode()
    return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}πŸ“‚</a>'

def display_file_manager():
    """Display file management sidebar."""
    st.sidebar.title("πŸ“ File Management")
    
    all_files = glob.glob("*.md")
    all_files.sort(reverse=True)

    if st.sidebar.button("πŸ—‘ Delete All"):
        for file in all_files:
            os.remove(file)
        st.rerun()

    if st.sidebar.button("⬇️ Download All"):
        zip_file = create_zip_of_files(all_files)
        st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)

    for file in all_files:
        col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
        with col1:
            if st.button("🌐", key="view_"+file):
                st.session_state.current_file = file
                st.session_state.file_content = load_file(file)
        with col2:
            st.markdown(get_download_link(file), unsafe_allow_html=True)
        with col3:
            if st.button("πŸ“‚", key="edit_"+file):
                st.session_state.current_file = file
                st.session_state.file_content = load_file(file)
        with col4:
            if st.button("πŸ—‘", key="delete_"+file):
                os.remove(file)
                st.rerun()

def create_media_gallery():
    """Create the media gallery interface."""
    st.header("🎬 Media Gallery")
    
    tabs = st.tabs(["πŸ–ΌοΈ Images", "🎡 Audio", "πŸŽ₯ Video", "🎨 Scene Generator"])
    
    with tabs[0]:
        image_files = glob.glob("*.png") + glob.glob("*.jpg")
        if image_files:
            num_cols = st.slider("Number of columns", 1, 5, 3)
            cols = st.columns(num_cols)
            for idx, image_file in enumerate(image_files):
                with cols[idx % num_cols]:
                    img = Image.open(image_file)
                    st.image(img, use_container_width=True)
                    
                    # Add GPT vision analysis option
                    if st.button(f"Analyze {os.path.basename(image_file)}"):
                        analysis = process_image(image_file, 
                                              "Describe this image in detail and identify key elements.")
                        st.markdown(analysis)
    
    with tabs[1]:
        audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
        for audio_file in audio_files:
            with st.expander(f"🎡 {os.path.basename(audio_file)}"):
                st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
                if st.button(f"Transcribe {os.path.basename(audio_file)}"):
                    with open(audio_file, "rb") as f:
                        transcription = process_audio(f)
                        st.write(transcription)
    
    with tabs[2]:
        video_files = glob.glob("*.mp4")
        for video_file in video_files:
            with st.expander(f"πŸŽ₯ {os.path.basename(video_file)}"):
                st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
                if st.button(f"Analyze {os.path.basename(video_file)}"):
                    analysis = process_video_with_gpt(video_file, 
                                                    "Describe what's happening in this video.")
                    st.markdown(analysis)
    
    with tabs[3]:
        for collection_name, bikes in bike_collections.items():
            st.subheader(collection_name)
            cols = st.columns(len(bikes))
            
            for idx, (bike_name, details) in enumerate(bikes.items()):
                with cols[idx]:
                    st.markdown(f"""
                    <div class='bike-card'>
                        <h3>{details['emoji']} {bike_name}</h3>
                        <p>{details['prompt']}</p>
                    </div>
                    """, unsafe_allow_html=True)
                    
                    if st.button(f"Generate {bike_name} Scene"):
                        prompt = details['prompt']
                        # Here you could integrate with image generation API
                        st.write(f"Generated scene description for {bike_name}:")
                        st.write(prompt)

def get_media_html(media_path, media_type="video", width="100%"):
    """Generate HTML for media player."""
    media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
    if media_type == "video":
        return f'''
        <video width="{width}" controls autoplay muted loop>
            <source src="data:video/mp4;base64,{media_data}" type="video/mp4">
            Your browser does not support the video tag.
        </video>
        '''
    else:  # audio
        return f'''
        <audio controls style="width: {width};">
            <source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
            Your browser does not support the audio element.
        </audio>
        '''


def process_transcription_with_ai(text):
    """Process transcribed text with all three AI models."""
    results = {
        "claude": None,
        "gpt": None,
        "arxiv": None
    }
    
    try:
        results["claude"] = process_with_claude(text)
    except Exception as e:
        st.error(f"Claude processing error: {e}")
        
    try:
        results["gpt"] = process_with_gpt(text)
    except Exception as e:
        st.error(f"GPT processing error: {e}")
        
    try:
        results["arxiv"] = perform_ai_lookup(text)
    except Exception as e:
        st.error(f"Arxiv processing error: {e}")
        
    return results

def handle_speech_recognition_component():
    """Handle the speech recognition component and AI processing."""
    st.subheader("Voice Recognition with Multi-Modal Output")
    
    # Initialize state for transcribed text
    if "transcribed_text" not in st.session_state:
        st.session_state.transcribed_text = ""
    
    # Render the React component
    component = components.declare_component(
        "speech_recognition",
        path="frontend/build"  # Update this path to match your React component location
    )
    
    # Handle component events
    component_result = component()
    if component_result:
        if component_result.get("type") == "process_ai":
            text = component_result.get("text", "").strip()
            if text:
                with st.spinner("Processing with AI models..."):
                    results = process_transcription_with_ai(text)
                    
                    # Display results in columns
                    col1, col2, col3 = st.columns(3)
                    with col1:
                        st.subheader("GPT-4o Results")
                        if results["gpt"]:
                            st.markdown(results["gpt"])
                    
                    with col2:
                        st.subheader("Claude Results")
                        if results["claude"]:
                            st.markdown(results["claude"])
                    
                    with col3:
                        st.subheader("Arxiv Results")
                        if results["arxiv"]:
                            st.markdown(results["arxiv"])
                                 

    
def main():
    st.sidebar.markdown("### 🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI")
    
    # Main navigation
    tab_main = st.radio("Choose Action:", 
                        ["🎀 Voice Input", "πŸ’¬ Chat", "πŸ“Έ Media Gallery", "πŸ” Search ArXiv", "πŸ“ File Editor"],
                        horizontal=True)
    
    if tab_main == "🎀 Voice Input":
        handle_speech_recognition_component()
          
    if tab_main == "🎀 Voice Input":
        st.subheader("Voice Recognition")
        
        # Display speech recognition component
        speech_component = st.components.v1.html(speech_recognition_html, height=400)
        
        # Handle speech recognition output
        if speech_component:
            try:
                data = speech_component
                if isinstance(data, dict):
                    if data.get('type') == 'final_transcript':
                        text = data.get('text', '').strip()
                        if text:
                            st.session_state.last_voice_input = text
                            
                            # Process voice input with AI
                            st.subheader("AI Response to Voice Input:")
                            
                            col1, col2, col3 = st.columns(3)
                            with col2:
                                st.write("Claude-3.5 Sonnet:")
                                try:
                                    claude_response = process_with_claude(text)
                                except:
                                    st.write('Claude 3.5 Sonnet out of tokens.')
                            with col1:
                                st.write("GPT-4o Omni:")
                                try:
                                    gpt_response = process_with_gpt(text)
                                except:
                                    st.write('GPT 4o out of tokens')
                            with col3:
                                st.write("Arxiv and Mistral Research:")
                                with st.spinner("Searching ArXiv..."):
                                    results = perform_ai_lookup(text)
                                    st.markdown(results)
                    
                    elif data.get('type') == 'clear_transcript':
                        st.session_state.last_voice_input = ""
                        st.experimental_rerun()
                        
            except Exception as e:
                st.error(f"Error processing voice input: {e}")
        
        # Display last voice input
        if st.session_state.last_voice_input:
            st.text_area("Last Voice Input:", st.session_state.last_voice_input, height=100)
    
    # [Rest of the main function remains the same]
    elif tab_main == "πŸ’¬ Chat":
        # [Previous chat interface code]
        pass
    
    elif tab_main == "πŸ“Έ Media Gallery":
        create_media_gallery()
    
    elif tab_main == "πŸ” Search ArXiv":
        query = st.text_input("Enter your research query:")
        if query:
            with st.spinner("Searching ArXiv..."):
                results = search_arxiv(query)
                st.markdown(results)
    
    elif tab_main == "πŸ“ File Editor":
        if hasattr(st.session_state, 'current_file'):
            st.subheader(f"Editing: {st.session_state.current_file}")
            new_content = st.text_area("Content:", st.session_state.file_content, height=300)
            if st.button("Save Changes"):
                with open(st.session_state.current_file, 'w', encoding='utf-8') as file:
                    file.write(new_content)
                st.success("File updated successfully!")

    # Always show file manager in sidebar
    display_file_manager()

if __name__ == "__main__":
    main()