Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import re
|
|
9 |
import random
|
10 |
import torch
|
11 |
import time
|
12 |
-
import shutil
|
13 |
import zipfile
|
14 |
from PIL import Image
|
15 |
from io import BytesIO
|
@@ -23,6 +23,7 @@ except:
|
|
23 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
24 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
25 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
26 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
27 |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
28 |
device = torch.device(
|
@@ -31,73 +32,79 @@ device = torch.device(
|
|
31 |
torch_device = device
|
32 |
torch_dtype = torch.float16
|
33 |
|
34 |
-
#
|
35 |
-
css = """
|
36 |
-
#container{
|
37 |
-
margin: 0 auto;
|
38 |
-
max-width: 40rem;
|
39 |
-
}
|
40 |
-
#intro{
|
41 |
-
max-width: 100%;
|
42 |
-
text-align: center;
|
43 |
-
margin: 0 auto;
|
44 |
-
}
|
45 |
-
"""
|
46 |
-
|
47 |
def encode_file_to_base64(file_path):
|
48 |
with open(file_path, "rb") as file:
|
49 |
encoded = base64.b64encode(file.read()).decode()
|
50 |
return encoded
|
51 |
|
52 |
def create_zip_of_files(files):
|
|
|
|
|
|
|
53 |
zip_name = "all_files.zip"
|
54 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
55 |
for file in files:
|
56 |
zipf.write(file)
|
57 |
return zip_name
|
58 |
|
|
|
59 |
def get_zip_download_link(zip_file):
|
|
|
|
|
|
|
60 |
with open(zip_file, 'rb') as f:
|
61 |
data = f.read()
|
62 |
b64 = base64.b64encode(data).decode()
|
63 |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
64 |
return href
|
65 |
|
|
|
66 |
def clear_all_images():
|
67 |
-
base_dir = os.getcwd()
|
68 |
-
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))]
|
|
|
|
|
69 |
for file in img_files:
|
70 |
os.remove(file)
|
71 |
print('removed:' + file)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
78 |
-
zip_filename = f"
|
79 |
-
|
80 |
with zipfile.ZipFile(zip_filename, 'w') as zipf:
|
81 |
-
|
82 |
-
for file in images:
|
83 |
zipf.write(file, os.path.basename(file))
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return zip_filename, download_link
|
94 |
-
|
95 |
def save_all_button_click():
|
96 |
images = [file for file in os.listdir() if file.lower().endswith((".png", ".jpg", ".jpeg"))]
|
97 |
zip_filename, download_link = save_all_images(images)
|
98 |
if download_link:
|
99 |
-
|
100 |
|
|
|
|
|
101 |
def clear_all_button_click():
|
102 |
clear_all_images()
|
103 |
|
@@ -120,6 +127,7 @@ pipe.to(device=torch_device, dtype=torch_dtype).to(device)
|
|
120 |
pipe.unet.to(memory_format=torch.channels_last)
|
121 |
pipe.set_progress_bar_config(disable=True)
|
122 |
|
|
|
123 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
124 |
pipe.enable_attention_slicing()
|
125 |
|
@@ -128,29 +136,28 @@ if TORCH_COMPILE:
|
|
128 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
129 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
130 |
|
|
|
131 |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
132 |
pipe.fuse_lora()
|
133 |
|
134 |
def safe_filename(text):
|
|
|
135 |
safe_text = re.sub(r'\W+', '_', text)
|
136 |
timestamp = datetime.datetime.now().strftime("%Y%m%d")
|
137 |
return f"{safe_text}_{timestamp}.png"
|
138 |
-
|
139 |
def encode_image(image):
|
|
|
140 |
buffered = BytesIO()
|
|
|
141 |
return base64.b64encode(buffered.getvalue()).decode()
|
142 |
|
143 |
def fake_gan():
|
144 |
-
base_dir = os.getcwd()
|
145 |
-
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))]
|
146 |
images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files]
|
147 |
return images
|
148 |
-
|
149 |
-
def save_prompt_to_history(prompt):
|
150 |
-
with open("prompt_history.txt", "a") as f:
|
151 |
-
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
152 |
-
f.write(f"{timestamp}: {prompt}\n")
|
153 |
-
|
154 |
def predict(prompt, guidance, steps, seed=1231231):
|
155 |
generator = torch.manual_seed(seed)
|
156 |
last_time = time.time()
|
@@ -161,13 +168,10 @@ def predict(prompt, guidance, steps, seed=1231231):
|
|
161 |
guidance_scale=guidance,
|
162 |
width=512,
|
163 |
height=512,
|
|
|
164 |
output_type="pil",
|
165 |
)
|
166 |
print(f"Pipe took {time.time() - last_time} seconds")
|
167 |
-
|
168 |
-
# Save prompt to history
|
169 |
-
save_prompt_to_history(prompt)
|
170 |
-
|
171 |
nsfw_content_detected = (
|
172 |
results.nsfw_content_detected[0]
|
173 |
if "nsfw_content_detected" in results
|
@@ -183,24 +187,35 @@ def predict(prompt, guidance, steps, seed=1231231):
|
|
183 |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
184 |
filename = f"{safe_date_time}_{safe_prompt}.png"
|
185 |
|
|
|
186 |
if len(results.images) > 0:
|
187 |
-
image_path = os.path.join("", filename)
|
188 |
results.images[0].save(image_path)
|
189 |
print(f"#Image saved as {image_path}")
|
190 |
gr.File(image_path)
|
191 |
gr.Button(link=image_path)
|
|
|
|
|
|
|
192 |
except:
|
193 |
return results.images[0]
|
194 |
|
195 |
return results.images[0] if len(results.images) > 0 else None
|
196 |
|
197 |
-
def read_prompt_history():
|
198 |
-
if os.path.exists("prompt_history.txt"):
|
199 |
-
with open("prompt_history.txt", "r") as f:
|
200 |
-
return f.read()
|
201 |
-
return "No prompts yet."
|
202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
with gr.Blocks(css=css) as demo:
|
|
|
204 |
with gr.Column(elem_id="container"):
|
205 |
gr.Markdown(
|
206 |
"""4📝RT🖼️Images - 🕹️ Real Time 🎨 Image Generator Gallery 🌐""",
|
@@ -215,8 +230,10 @@ with gr.Blocks(css=css) as demo:
|
|
215 |
|
216 |
gr.Button("Download", link="/file=all_files.zip")
|
217 |
|
|
|
218 |
image = gr.Image(type="filepath")
|
219 |
|
|
|
220 |
with gr.Row(variant="compact"):
|
221 |
text = gr.Textbox(
|
222 |
label="Image Sets",
|
@@ -231,9 +248,12 @@ with gr.Blocks(css=css) as demo:
|
|
231 |
)
|
232 |
|
233 |
with gr.Row(variant="compact"):
|
|
|
234 |
save_all_button = gr.Button("💾 Save All", scale=1)
|
|
|
235 |
clear_all_button = gr.Button("🗑️ Clear All", scale=1)
|
236 |
|
|
|
237 |
with gr.Accordion("Advanced options", open=False):
|
238 |
guidance = gr.Slider(
|
239 |
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
@@ -243,54 +263,46 @@ with gr.Blocks(css=css) as demo:
|
|
243 |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
244 |
)
|
245 |
|
246 |
-
|
247 |
-
prompt_history = gr.Textbox(label="Prompt History", lines=10, max_lines=20, interactive=False)
|
248 |
-
|
249 |
with gr.Accordion("Run with diffusers"):
|
250 |
gr.Markdown(
|
251 |
"""## Running LCM-LoRAs it with `diffusers`
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
)
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
guidance.change(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False)
|
280 |
-
steps.change(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False)
|
281 |
-
seed.change(fn=predict, inputs=inputs, outputs=[image, prompt_history], show_progress=False)
|
282 |
-
|
283 |
-
def update_prompt_history():
|
284 |
-
return read_prompt_history()
|
285 |
|
286 |
-
|
287 |
-
|
288 |
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
|
295 |
demo.queue()
|
296 |
-
demo.launch(allowed_paths=["/"])
|
|
|
9 |
import random
|
10 |
import torch
|
11 |
import time
|
12 |
+
import shutil # Added for zip functionality
|
13 |
import zipfile
|
14 |
from PIL import Image
|
15 |
from io import BytesIO
|
|
|
23 |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
|
24 |
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
|
25 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
26 |
+
# check if MPS is available OSX only M1/M2/M3 chips
|
27 |
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
28 |
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
|
29 |
device = torch.device(
|
|
|
32 |
torch_device = device
|
33 |
torch_dtype = torch.float16
|
34 |
|
35 |
+
# Function to encode a file to base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
def encode_file_to_base64(file_path):
|
37 |
with open(file_path, "rb") as file:
|
38 |
encoded = base64.b64encode(file.read()).decode()
|
39 |
return encoded
|
40 |
|
41 |
def create_zip_of_files(files):
|
42 |
+
"""
|
43 |
+
Create a zip file from a list of files.
|
44 |
+
"""
|
45 |
zip_name = "all_files.zip"
|
46 |
with zipfile.ZipFile(zip_name, 'w') as zipf:
|
47 |
for file in files:
|
48 |
zipf.write(file)
|
49 |
return zip_name
|
50 |
|
51 |
+
|
52 |
def get_zip_download_link(zip_file):
|
53 |
+
"""
|
54 |
+
Generate a link to download the zip file.
|
55 |
+
"""
|
56 |
with open(zip_file, 'rb') as f:
|
57 |
data = f.read()
|
58 |
b64 = base64.b64encode(data).decode()
|
59 |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
|
60 |
return href
|
61 |
|
62 |
+
# Function to clear all image files
|
63 |
def clear_all_images():
|
64 |
+
base_dir = os.getcwd() # Get the current base directory
|
65 |
+
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
|
66 |
+
|
67 |
+
# Remove all image files
|
68 |
for file in img_files:
|
69 |
os.remove(file)
|
70 |
print('removed:' + file)
|
71 |
+
|
72 |
+
# add file save and download and clear:
|
73 |
+
# Function to create a zip file from a list of files
|
74 |
+
def create_zip(files):
|
|
|
75 |
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
76 |
+
zip_filename = f"images_{timestamp}.zip"
|
77 |
+
print('Creating file ' + zip_filename)
|
78 |
with zipfile.ZipFile(zip_filename, 'w') as zipf:
|
79 |
+
for file in files:
|
|
|
80 |
zipf.write(file, os.path.basename(file))
|
81 |
+
print('added:' + file)
|
82 |
+
return zip_filename
|
83 |
+
|
84 |
+
def get_zip_download_link(zip_file):
|
85 |
+
"""
|
86 |
+
Generate a link to download the zip file.
|
87 |
+
"""
|
88 |
+
zip_base64 = encode_file_to_base64(zip_file) # Encode the zip file to base64
|
89 |
+
href = f'<a href="data:application/zip;base64,{zip_base64}" download="{zip_file}">Download All</a>'
|
90 |
+
return href
|
91 |
|
92 |
+
def save_all_images(images):
|
93 |
+
if len(images) == 0:
|
94 |
+
return None, None
|
95 |
+
zip_filename = create_zip_of_files(images) # Create a zip file from the list of image files
|
96 |
+
print(f"Zip file created: {zip_filename}")
|
97 |
+
download_link = get_zip_download_link(zip_filename)
|
98 |
return zip_filename, download_link
|
99 |
+
|
100 |
def save_all_button_click():
|
101 |
images = [file for file in os.listdir() if file.lower().endswith((".png", ".jpg", ".jpeg"))]
|
102 |
zip_filename, download_link = save_all_images(images)
|
103 |
if download_link:
|
104 |
+
gr.HTML(download_link)
|
105 |
|
106 |
+
|
107 |
+
# Function to handle "Clear All" button click
|
108 |
def clear_all_button_click():
|
109 |
clear_all_images()
|
110 |
|
|
|
127 |
pipe.unet.to(memory_format=torch.channels_last)
|
128 |
pipe.set_progress_bar_config(disable=True)
|
129 |
|
130 |
+
# check if computer has less than 64GB of RAM using sys or os
|
131 |
if psutil.virtual_memory().total < 64 * 1024**3:
|
132 |
pipe.enable_attention_slicing()
|
133 |
|
|
|
136 |
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
|
137 |
pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0)
|
138 |
|
139 |
+
# Load LCM LoRA
|
140 |
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
|
141 |
pipe.fuse_lora()
|
142 |
|
143 |
def safe_filename(text):
|
144 |
+
"""Generate a safe filename from a string."""
|
145 |
safe_text = re.sub(r'\W+', '_', text)
|
146 |
timestamp = datetime.datetime.now().strftime("%Y%m%d")
|
147 |
return f"{safe_text}_{timestamp}.png"
|
148 |
+
|
149 |
def encode_image(image):
|
150 |
+
"""Encode image to base64."""
|
151 |
buffered = BytesIO()
|
152 |
+
#image.save(buffered, format="PNG")
|
153 |
return base64.b64encode(buffered.getvalue()).decode()
|
154 |
|
155 |
def fake_gan():
|
156 |
+
base_dir = os.getcwd() # Get the current base directory
|
157 |
+
img_files = [file for file in os.listdir(base_dir) if file.lower().endswith((".png", ".jpg", ".jpeg"))] # List all files ending with ".jpg" or ".jpeg"
|
158 |
images = [(random.choice(img_files), os.path.splitext(file)[0]) for file in img_files]
|
159 |
return images
|
160 |
+
|
|
|
|
|
|
|
|
|
|
|
161 |
def predict(prompt, guidance, steps, seed=1231231):
|
162 |
generator = torch.manual_seed(seed)
|
163 |
last_time = time.time()
|
|
|
168 |
guidance_scale=guidance,
|
169 |
width=512,
|
170 |
height=512,
|
171 |
+
# original_inference_steps=params.lcm_steps,
|
172 |
output_type="pil",
|
173 |
)
|
174 |
print(f"Pipe took {time.time() - last_time} seconds")
|
|
|
|
|
|
|
|
|
175 |
nsfw_content_detected = (
|
176 |
results.nsfw_content_detected[0]
|
177 |
if "nsfw_content_detected" in results
|
|
|
187 |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
188 |
filename = f"{safe_date_time}_{safe_prompt}.png"
|
189 |
|
190 |
+
# Save the image
|
191 |
if len(results.images) > 0:
|
192 |
+
image_path = os.path.join("", filename) # Specify your directory
|
193 |
results.images[0].save(image_path)
|
194 |
print(f"#Image saved as {image_path}")
|
195 |
gr.File(image_path)
|
196 |
gr.Button(link=image_path)
|
197 |
+
# encoded_image = encode_image(image)
|
198 |
+
# html_link = f'<a href="data:image/png;base64,{encoded_image}" download="{filename}">Download Image</a>'
|
199 |
+
# gr.HTML(html_link)
|
200 |
except:
|
201 |
return results.images[0]
|
202 |
|
203 |
return results.images[0] if len(results.images) > 0 else None
|
204 |
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
+
css = """
|
207 |
+
#container{
|
208 |
+
margin: 0 auto;
|
209 |
+
max-width: 40rem;
|
210 |
+
}
|
211 |
+
#intro{
|
212 |
+
max-width: 100%;
|
213 |
+
text-align: center;
|
214 |
+
margin: 0 auto;
|
215 |
+
}
|
216 |
+
"""
|
217 |
with gr.Blocks(css=css) as demo:
|
218 |
+
|
219 |
with gr.Column(elem_id="container"):
|
220 |
gr.Markdown(
|
221 |
"""4📝RT🖼️Images - 🕹️ Real Time 🎨 Image Generator Gallery 🌐""",
|
|
|
230 |
|
231 |
gr.Button("Download", link="/file=all_files.zip")
|
232 |
|
233 |
+
# Image Result from last prompt
|
234 |
image = gr.Image(type="filepath")
|
235 |
|
236 |
+
# Gallery of Generated Images with Image Names in Random Set to Download
|
237 |
with gr.Row(variant="compact"):
|
238 |
text = gr.Textbox(
|
239 |
label="Image Sets",
|
|
|
248 |
)
|
249 |
|
250 |
with gr.Row(variant="compact"):
|
251 |
+
# Add "Save All" button with emoji
|
252 |
save_all_button = gr.Button("💾 Save All", scale=1)
|
253 |
+
# Add "Clear All" button with emoji
|
254 |
clear_all_button = gr.Button("🗑️ Clear All", scale=1)
|
255 |
|
256 |
+
# Advanced Generate Options
|
257 |
with gr.Accordion("Advanced options", open=False):
|
258 |
guidance = gr.Slider(
|
259 |
label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
|
|
|
263 |
randomize=True, minimum=0, maximum=12013012031030, label="Seed", step=1
|
264 |
)
|
265 |
|
266 |
+
# Diffusers
|
|
|
|
|
267 |
with gr.Accordion("Run with diffusers"):
|
268 |
gr.Markdown(
|
269 |
"""## Running LCM-LoRAs it with `diffusers`
|
270 |
+
```bash
|
271 |
+
pip install diffusers==0.23.0
|
272 |
+
```
|
273 |
+
|
274 |
+
```py
|
275 |
+
from diffusers import DiffusionPipeline, LCMScheduler
|
276 |
+
pipe = DiffusionPipeline.from_pretrained("Lykon/dreamshaper-7").to("cuda")
|
277 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
278 |
+
pipe.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") #yes, it's a normal LoRA
|
279 |
+
results = pipe(
|
280 |
+
prompt="ImageEditor",
|
281 |
+
num_inference_steps=4,
|
282 |
+
guidance_scale=0.0,
|
283 |
+
)
|
284 |
+
results.images[0]
|
285 |
+
```
|
286 |
+
"""
|
287 |
)
|
288 |
|
289 |
+
# Function IO Eventing and Controls
|
290 |
+
inputs = [prompt, guidance, steps, seed]
|
291 |
+
generate_bt.click(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
292 |
+
btn.click(fake_gan, None, gallery)
|
293 |
+
prompt.input(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
294 |
+
guidance.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
295 |
+
steps.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
296 |
+
seed.change(fn=predict, inputs=inputs, outputs=image, show_progress=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
# Attach click event handlers to the buttons
|
299 |
+
save_all_button.click(save_all_button_click)
|
300 |
|
301 |
+
with gr.Column():
|
302 |
+
file_obj = gr.File(label="Input File")
|
303 |
+
input= file_obj
|
304 |
+
|
305 |
+
clear_all_button.click(clear_all_button_click)
|
306 |
|
307 |
demo.queue()
|
308 |
+
demo.launch(allowed_paths=["/"])
|