File size: 5,660 Bytes
91db81f
 
 
fba4d1f
9f3cf94
ce08b6d
9f3cf94
 
91db81f
 
 
fba4d1f
 
 
 
91db81f
 
 
ce08b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173ec9f
ce08b6d
91db81f
ce08b6d
 
91db81f
ce08b6d
 
9d7c221
fba4d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce08b6d
 
fba4d1f
 
 
 
 
 
 
 
 
 
 
 
 
ce08b6d
fba4d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce08b6d
 
9d7c221
3febaf2
 
 
a11d82f
15f6774
c283503
 
 
3febaf2
 
 
 
15f6774
c283503
 
ce08b6d
15f6774
 
 
 
ce08b6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import io
import re
import streamlit as st

# Must be the first Streamlit command.
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")

from PIL import Image
import fitz  # PyMuPDF

from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont

# ---------------------------------------------------------------
# Define available NotoEmoji fonts (local files)
# One font is at the root and others are in the 'static' subdirectory.
available_fonts = {
    "NotoEmoji Variable": "NotoEmoji-VariableFont_wght.ttf",
    "NotoEmoji Bold": "NotoEmoji-Bold.ttf",
    "NotoEmoji Light": "NotoEmoji-Light.ttf",
    "NotoEmoji Medium": "NotoEmoji-Medium.ttf",
    "NotoEmoji Regular": "NotoEmoji-Regular.ttf",
    "NotoEmoji SemiBold": "NotoEmoji-SemiBold.ttf"
}

# Sidebar: Let the user choose the desired NotoEmoji font.
selected_font_name = st.sidebar.selectbox(
    "Select NotoEmoji Font",
    options=list(available_fonts.keys())
)
selected_font_path = available_fonts[selected_font_name]

# Register the chosen font with ReportLab.
pdfmetrics.registerFont(TTFont(selected_font_name, selected_font_path))

# ---------------------------------------------------------------
# Default markdown content with emojis.
default_markdown = """# Cutting-Edge ML Outline

## Core ML Techniques
1. 🌟 **Mixture of Experts (MoE)**
   - Conditional computation techniques
   - Sparse gating mechanisms
   - Training specialized sub-models

2. πŸ”₯ **Supervised Fine-Tuning (SFT) using PyTorch**
   - Loss function customization
   - Gradient accumulation strategies
   - Learning rate schedulers

3. πŸ€– **Large Language Models (LLM) using Transformers**
   - Attention mechanisms
   - Tokenization strategies
   - Position encodings

## Training Methods
4. πŸ“Š **Self-Rewarding Learning using NPS 0-10 and Verbatims**
   - Custom reward functions
   - Feedback categorization
   - Signal extraction from text

5. πŸ‘ **Reinforcement Learning from Human Feedback (RLHF)**
   - Preference datasets
   - PPO implementation
   - KL divergence constraints

6. πŸ”— **MergeKit: Merging Models to Same Embedding Space**
   - TIES merging
   - Task arithmetic
   - SLERP interpolation

## Optimization & Deployment
7. πŸ“ **DistillKit: Model Size Reduction with Spectrum Analysis**
   - Knowledge distillation
   - Quantization techniques
   - Model pruning strategies

8. 🧠 **Agentic RAG Agents using Document Inputs**
   - Vector database integration
   - Query planning
   - Self-reflection mechanisms

9. ⏳ **Longitudinal Data Summarization from Multiple Docs**
   - Multi-document compression
   - Timeline extraction
   - Entity tracking

## Knowledge Representation
10. πŸ“‘ **Knowledge Extraction using Markdown Knowledge Graphs**
    - Entity recognition
    - Relationship mapping
    - Hierarchical structuring

11. πŸ—ΊοΈ **Knowledge Mapping with Mermaid Diagrams**
    - Flowchart generation
    - Sequence diagram creation
    - State diagrams

12. πŸ’» **ML Code Generation with Streamlit/Gradio/HTML5+JS**
    - Code completion
    - Unit test generation
    - Documentation synthesis
"""

# ---------------------------------------------------------------
# Process markdown into PDF content.
def markdown_to_pdf_content(markdown_text):
    lines = markdown_text.strip().split('\n')
    pdf_content = []
    in_list_item = False
    current_item = None
    sub_items = []
    
    for line in lines:
        line = line.strip()
        if not line:
            continue
            
        if line.startswith('# '):
            # Optionally skip the main title.
            pass
        elif line.startswith('## '):
            if current_item and sub_items:
                pdf_content.append([current_item, sub_items])
                sub_items = []
                current_item = None
            section = line.replace('## ', '').strip()
            pdf_content.append(f"<b>{section}</b>")
            in_list_item = False
        elif re.match(r'^\d+\.', line):
            if current_item and sub_items:
                pdf_content.append([current_item, sub_items])
                sub_items = []
            current_item = line.strip()
            in_list_item = True
        elif line.startswith('- ') and in_list_item:
            sub_items.append(line.strip())
        else:
            if not in_list_item:
                pdf_content.append(line.strip())
    
    if current_item and sub_items:
        pdf_content.append([current_item, sub_items])
    
    mid_point = len(pdf_content) // 2
    left_column = pdf_content[:mid_point]
    right_column = pdf_content[mid_point:]
    
    return left_column, right_column

# ---------------------------------------------------------------
# Create PDF using ReportLab.
def create_main_pdf(markdown_text, base_font_size=10, auto_size=False):
    buffer = io.BytesIO()
    doc = SimpleDocTemplate(
        buffer, 
        pagesize=(A4[1], A4[0]),
        leftMargin=36,
        rightMargin=36,
        topMargin=36,
        bottomMargin=36
    )
    
    styles = getSampleStyleSheet()
    story = []
    spacer_height = 10
    left_column, right_column = markdown_to_pdf_content(markdown_text)
    
    # Count total items to possibly adjust font size.
    total_items = 0
    for col in (left_column, right_column):
        for item in col:
            if isinstance(item, list):
                main_item, sub_items