Spaces:
Sleeping
Sleeping
File size: 5,660 Bytes
91db81f fba4d1f 9f3cf94 ce08b6d 9f3cf94 91db81f fba4d1f 91db81f ce08b6d 173ec9f ce08b6d 91db81f ce08b6d 91db81f ce08b6d 9d7c221 fba4d1f ce08b6d fba4d1f ce08b6d fba4d1f ce08b6d 9d7c221 3febaf2 a11d82f 15f6774 c283503 3febaf2 15f6774 c283503 ce08b6d 15f6774 ce08b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import os
import io
import re
import streamlit as st
# Must be the first Streamlit command.
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
from PIL import Image
import fitz # PyMuPDF
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
# ---------------------------------------------------------------
# Define available NotoEmoji fonts (local files)
# One font is at the root and others are in the 'static' subdirectory.
available_fonts = {
"NotoEmoji Variable": "NotoEmoji-VariableFont_wght.ttf",
"NotoEmoji Bold": "NotoEmoji-Bold.ttf",
"NotoEmoji Light": "NotoEmoji-Light.ttf",
"NotoEmoji Medium": "NotoEmoji-Medium.ttf",
"NotoEmoji Regular": "NotoEmoji-Regular.ttf",
"NotoEmoji SemiBold": "NotoEmoji-SemiBold.ttf"
}
# Sidebar: Let the user choose the desired NotoEmoji font.
selected_font_name = st.sidebar.selectbox(
"Select NotoEmoji Font",
options=list(available_fonts.keys())
)
selected_font_path = available_fonts[selected_font_name]
# Register the chosen font with ReportLab.
pdfmetrics.registerFont(TTFont(selected_font_name, selected_font_path))
# ---------------------------------------------------------------
# Default markdown content with emojis.
default_markdown = """# Cutting-Edge ML Outline
## Core ML Techniques
1. π **Mixture of Experts (MoE)**
- Conditional computation techniques
- Sparse gating mechanisms
- Training specialized sub-models
2. π₯ **Supervised Fine-Tuning (SFT) using PyTorch**
- Loss function customization
- Gradient accumulation strategies
- Learning rate schedulers
3. π€ **Large Language Models (LLM) using Transformers**
- Attention mechanisms
- Tokenization strategies
- Position encodings
## Training Methods
4. π **Self-Rewarding Learning using NPS 0-10 and Verbatims**
- Custom reward functions
- Feedback categorization
- Signal extraction from text
5. π **Reinforcement Learning from Human Feedback (RLHF)**
- Preference datasets
- PPO implementation
- KL divergence constraints
6. π **MergeKit: Merging Models to Same Embedding Space**
- TIES merging
- Task arithmetic
- SLERP interpolation
## Optimization & Deployment
7. π **DistillKit: Model Size Reduction with Spectrum Analysis**
- Knowledge distillation
- Quantization techniques
- Model pruning strategies
8. π§ **Agentic RAG Agents using Document Inputs**
- Vector database integration
- Query planning
- Self-reflection mechanisms
9. β³ **Longitudinal Data Summarization from Multiple Docs**
- Multi-document compression
- Timeline extraction
- Entity tracking
## Knowledge Representation
10. π **Knowledge Extraction using Markdown Knowledge Graphs**
- Entity recognition
- Relationship mapping
- Hierarchical structuring
11. πΊοΈ **Knowledge Mapping with Mermaid Diagrams**
- Flowchart generation
- Sequence diagram creation
- State diagrams
12. π» **ML Code Generation with Streamlit/Gradio/HTML5+JS**
- Code completion
- Unit test generation
- Documentation synthesis
"""
# ---------------------------------------------------------------
# Process markdown into PDF content.
def markdown_to_pdf_content(markdown_text):
lines = markdown_text.strip().split('\n')
pdf_content = []
in_list_item = False
current_item = None
sub_items = []
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith('# '):
# Optionally skip the main title.
pass
elif line.startswith('## '):
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
sub_items = []
current_item = None
section = line.replace('## ', '').strip()
pdf_content.append(f"<b>{section}</b>")
in_list_item = False
elif re.match(r'^\d+\.', line):
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
sub_items = []
current_item = line.strip()
in_list_item = True
elif line.startswith('- ') and in_list_item:
sub_items.append(line.strip())
else:
if not in_list_item:
pdf_content.append(line.strip())
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
mid_point = len(pdf_content) // 2
left_column = pdf_content[:mid_point]
right_column = pdf_content[mid_point:]
return left_column, right_column
# ---------------------------------------------------------------
# Create PDF using ReportLab.
def create_main_pdf(markdown_text, base_font_size=10, auto_size=False):
buffer = io.BytesIO()
doc = SimpleDocTemplate(
buffer,
pagesize=(A4[1], A4[0]),
leftMargin=36,
rightMargin=36,
topMargin=36,
bottomMargin=36
)
styles = getSampleStyleSheet()
story = []
spacer_height = 10
left_column, right_column = markdown_to_pdf_content(markdown_text)
# Count total items to possibly adjust font size.
total_items = 0
for col in (left_column, right_column):
for item in col:
if isinstance(item, list):
main_item, sub_items
|