File size: 10,271 Bytes
fba4d1f 90a9144 a11d82f fba4d1f 9d7c221 fba4d1f 9d7c221 3febaf2 a11d82f 15f6774 c283503 3febaf2 15f6774 c283503 15f6774 fba4d1f 15f6774 9d7c221 a11d82f 9d7c221 c283503 9d7c221 c283503 3febaf2 9d7c221 3febaf2 c283503 3febaf2 c283503 3febaf2 c283503 3febaf2 c283503 3febaf2 15f6774 3febaf2 c283503 3febaf2 c283503 3febaf2 15f6774 c283503 3febaf2 fba4d1f 90a9144 fba4d1f 9d7c221 a11d82f 9d7c221 90a9144 9d7c221 90a9144 a11d82f 9d7c221 a11d82f 9d7c221 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import streamlit as st
import base64
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
import io
import re
import fitz # PyMuPDF
from PIL import Image
# Initial markdown content
default_markdown = """# Cutting-Edge ML Outline
## Core ML Techniques
1. π **Mixture of Experts (MoE)**
- Conditional computation techniques
- Sparse gating mechanisms
- Training specialized sub-models
2. π₯ **Supervised Fine-Tuning (SFT) using PyTorch**
- Loss function customization
- Gradient accumulation strategies
- Learning rate schedulers
3. π€ **Large Language Models (LLM) using Transformers**
- Attention mechanisms
- Tokenization strategies
- Position encodings
## Training Methods
4. π **Self-Rewarding Learning using NPS 0-10 and Verbatims**
- Custom reward functions
- Feedback categorization
- Signal extraction from text
5. π **Reinforcement Learning from Human Feedback (RLHF)**
- Preference datasets
- PPO implementation
- KL divergence constraints
6. π **MergeKit: Merging Models to Same Embedding Space**
- TIES merging
- Task arithmetic
- SLERP interpolation
## Optimization & Deployment
7. π **DistillKit: Model Size Reduction with Spectrum Analysis**
- Knowledge distillation
- Quantization techniques
- Model pruning strategies
8. π§ **Agentic RAG Agents using Document Inputs**
- Vector database integration
- Query planning
- Self-reflection mechanisms
9. β³ **Longitudinal Data Summarization from Multiple Docs**
- Multi-document compression
- Timeline extraction
- Entity tracking
## Knowledge Representation
10. π **Knowledge Extraction using Markdown Knowledge Graphs**
- Entity recognition
- Relationship mapping
- Hierarchical structuring
11. πΊοΈ **Knowledge Mapping with Mermaid Diagrams**
- Flowchart generation
- Sequence diagram creation
- State diagrams
12. π» **ML Code Generation with Streamlit/Gradio/HTML5+JS**
- Code completion
- Unit test generation
- Documentation synthesis
"""
# Process multilevel markdown for PDF output
def markdown_to_pdf_content(markdown_text):
lines = markdown_text.strip().split('\n')
pdf_content = []
in_list_item = False
current_item = None
sub_items = []
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith('# '):
pass
elif line.startswith('## '):
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
sub_items = []
current_item = None
section = line.replace('## ', '').strip()
pdf_content.append(f"<b>{section}</b>")
in_list_item = False
elif re.match(r'^\d+\.', line):
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
sub_items = []
current_item = line.strip()
in_list_item = True
elif line.startswith('- ') and in_list_item:
sub_items.append(line.strip())
else:
if not in_list_item:
pdf_content.append(line.strip())
if current_item and sub_items:
pdf_content.append([current_item, sub_items])
mid_point = len(pdf_content) // 2
left_column = pdf_content[:mid_point]
right_column = pdf_content[mid_point:]
return left_column, right_column
# Main PDF creation with parameterized text sizes
def create_main_pdf(markdown_text, base_font_size=10, auto_size=False):
buffer = io.BytesIO()
doc = SimpleDocTemplate(
buffer,
pagesize=(A4[1], A4[0]),
leftMargin=36,
rightMargin=36,
topMargin=36,
bottomMargin=36
)
styles = getSampleStyleSheet()
story = []
page_height = A4[0] - 72
title_height = 20
spacer_height = 10
left_column, right_column = markdown_to_pdf_content(markdown_text)
total_items = 0
for col in (left_column, right_column):
for item in col:
if isinstance(item, list):
main_item, sub_items = item
total_items += 1 + len(sub_items)
else:
total_items += 1
# π§ Adjust this multiplier to control autosizing sensitivity
if auto_size:
base_font_size = max(6, min(12, 200 / total_items))
# π§ Font size parameters - tweak these ratios as needed
item_font_size = base_font_size
subitem_font_size = base_font_size * 0.9
section_font_size = base_font_size * 1.2
title_font_size = min(16, base_font_size * 1.5)
title_style = styles['Heading1']
title_style.textColor = colors.darkblue
title_style.alignment = 1
title_style.fontSize = title_font_size
section_style = ParagraphStyle(
'SectionStyle',
parent=styles['Heading2'],
textColor=colors.darkblue,
fontSize=section_font_size,
leading=section_font_size * 1.2,
spaceAfter=2
)
item_style = ParagraphStyle(
'ItemStyle',
parent=styles['Normal'],
fontSize=item_font_size,
leading=item_font_size * 1.2,
fontName='Helvetica-Bold',
spaceAfter=1
)
subitem_style = ParagraphStyle(
'SubItemStyle',
parent=styles['Normal'],
fontSize=subitem_font_size,
leading=subitem_font_size * 1.2,
leftIndent=10,
spaceAfter=1
)
story.append(Paragraph("Cutting-Edge ML Outline (ReportLab)", title_style))
story.append(Spacer(1, spacer_height))
left_cells = []
for item in left_column:
if isinstance(item, str) and item.startswith('<b>'):
text = item.replace('<b>', '').replace('</b>', '')
left_cells.append(Paragraph(text, section_style))
elif isinstance(item, list):
main_item, sub_items = item
left_cells.append(Paragraph(main_item, item_style))
for sub_item in sub_items:
left_cells.append(Paragraph(sub_item, subitem_style))
else:
left_cells.append(Paragraph(item, item_style))
right_cells = []
for item in right_column:
if isinstance(item, str) and item.startswith('<b>'):
text = item.replace('<b>', '').replace('</b>', '')
right_cells.append(Paragraph(text, section_style))
elif isinstance(item, list):
main_item, sub_items = item
right_cells.append(Paragraph(main_item, item_style))
for sub_item in sub_items:
right_cells.append(Paragraph(sub_item, subitem_style))
else:
right_cells.append(Paragraph(item, item_style))
max_cells = max(len(left_cells), len(right_cells))
left_cells.extend([""] * (max_cells - len(left_cells)))
right_cells.extend([""] * (max_cells - len(right_cells)))
table_data = list(zip(left_cells, right_cells))
col_width = (A4[1] - 72) / 2.0
table = Table(table_data, colWidths=[col_width, col_width], hAlign='CENTER')
table.setStyle(TableStyle([
('VALIGN', (0, 0), (-1, -1), 'TOP'),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('BACKGROUND', (0, 0), (-1, -1), colors.white),
('GRID', (0, 0), (-1, -1), 0, colors.white),
('LINEAFTER', (0, 0), (0, -1), 0.5, colors.grey),
('LEFTPADDING', (0, 0), (-1, -1), 2),
('RIGHTPADDING', (0, 0), (-1, -1), 2),
('TOPPADDING', (0, 0), (-1, -1), 1),
('BOTTOMPADDING', (0, 0), (-1, -1), 1),
]))
story.append(table)
doc.build(story)
buffer.seek(0)
return buffer.getvalue()
# Function to convert PDF bytes to image using fitz (from backup.03302025-720pm.app.py)
def pdf_to_image(pdf_bytes):
try:
# Open PDF from bytes
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
# Get the first page
page = doc[0]
# Render page to pixmap with a zoom factor for clarity
pix = page.get_pixmap(matrix=fitz.Matrix(2.0, 2.0)) # 2x zoom
# Convert to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
doc.close()
return img
except Exception as e:
st.error(f"Failed to render PDF preview: {e}")
return None
# Streamlit UI
st.title("π Cutting-Edge ML Outline Generator")
# Sidebar for settings
with st.sidebar:
st.header("PDF Settings")
auto_size = st.checkbox("Auto-size text", value=True)
if not auto_size:
base_font_size = st.slider("Base Font Size (points)", min_value=6, max_value=16, value=10, step=1)
else:
base_font_size = 10
st.info("Font size will auto-adjust between 6-12 points based on content length.")
# Use session state to persist markdown content
if 'markdown_content' not in st.session_state:
st.session_state.markdown_content = default_markdown
# Generate PDF
with st.spinner("Generating PDF..."):
pdf_bytes = create_main_pdf(st.session_state.markdown_content, base_font_size, auto_size)
# Display PDF preview using fitz
st.subheader("PDF Preview")
pdf_image = pdf_to_image(pdf_bytes)
if pdf_image:
st.image(pdf_image, caption="PDF Page 1", use_column_width=True)
else:
st.info("Download the PDF to view it locally.")
# Download button
st.download_button(
label="Download PDF",
data=pdf_bytes,
file_name="ml_outline.pdf",
mime="application/pdf"
)
# Markdown editor
st.subheader("Edit Markdown Outline")
edited_markdown = st.text_area(
"Modify the markdown content below:",
value=st.session_state.markdown_content,
height=300
)
# Update markdown and regenerate PDF on change
if st.button("Update PDF"):
st.session_state.markdown_content = edited_markdown
st.rerun()
# Save markdown option
st.download_button(
label="Save Markdown",
data=st.session_state.markdown_content,
file_name="ml_outline.md",
mime="text/markdown"
) |