File size: 7,817 Bytes
3febaf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import streamlit as st
import base64
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
import io
import re

# Define the ML outline as a markdown string
ml_markdown = """# Cutting-Edge ML Outline

## Core ML Techniques
1. 🌟 **Mixture of Experts (MoE)**
   - Conditional computation techniques
   - Sparse gating mechanisms
   - Training specialized sub-models

2. πŸ”₯ **Supervised Fine-Tuning (SFT) using PyTorch**
   - Loss function customization
   - Gradient accumulation strategies
   - Learning rate schedulers

3. πŸ€– **Large Language Models (LLM) using Transformers**
   - Attention mechanisms
   - Tokenization strategies
   - Position encodings

## Training Methods
4. πŸ“Š **Self-Rewarding Learning using NPS 0-10 and Verbatims**
   - Custom reward functions
   - Feedback categorization
   - Signal extraction from text

5. πŸ‘ **Reinforcement Learning from Human Feedback (RLHF)**
   - Preference datasets
   - PPO implementation
   - KL divergence constraints

6. πŸ”— **MergeKit: Merging Models to Same Embedding Space**
   - TIES merging
   - Task arithmetic
   - SLERP interpolation

## Optimization & Deployment
7. πŸ“ **DistillKit: Model Size Reduction with Spectrum Analysis**
   - Knowledge distillation
   - Quantization techniques
   - Model pruning strategies

8. 🧠 **Agentic RAG Agents using Document Inputs**
   - Vector database integration
   - Query planning
   - Self-reflection mechanisms

9. ⏳ **Longitudinal Data Summarization from Multiple Docs**
   - Multi-document compression
   - Timeline extraction
   - Entity tracking

## Knowledge Representation
10. πŸ“‘ **Knowledge Extraction using Markdown Knowledge Graphs**
    - Entity recognition
    - Relationship mapping
    - Hierarchical structuring

11. πŸ—ΊοΈ **Knowledge Mapping with Mermaid Diagrams**
    - Flowchart generation
    - Sequence diagram creation
    - State diagrams

12. πŸ’» **ML Code Generation with Streamlit/Gradio/HTML5+JS**
    - Code completion
    - Unit test generation
    - Documentation synthesis
"""

# Process multilevel markdown for PDF output
def markdown_to_pdf_content(markdown_text):
    """Convert markdown text to a format suitable for PDF generation"""
    lines = markdown_text.strip().split('\n')
    pdf_content = []
    in_list_item = False
    current_item = None
    sub_items = []
    
    for line in lines:
        line = line.strip()
        if not line:
            continue
            
        if line.startswith('# '):
            pass
        elif line.startswith('## '):
            if current_item and sub_items:
                pdf_content.append([current_item, sub_items])
                sub_items = []
                current_item = None
                
            section = line.replace('## ', '').strip()
            pdf_content.append(f"<b>{section}</b>")
            in_list_item = False
        elif re.match(r'^\d+\.', line):
            if current_item and sub_items:
                pdf_content.append([current_item, sub_items])
                sub_items = []
            
            current_item = line.strip()
            in_list_item = True
        elif line.startswith('- ') and in_list_item:
            sub_items.append(line.strip())
        else:
            if not in_list_item:
                pdf_content.append(line.strip())
    
    if current_item and sub_items:
        pdf_content.append([current_item, sub_items])
    
    mid_point = len(pdf_content) // 2
    left_column = pdf_content[:mid_point]
    right_column = pdf_content[mid_point:]
    
    return left_column, right_column

# Main PDF creation using ReportLab
def create_main_pdf(markdown_text):
    """Create a single-page landscape PDF with the outline in two columns"""
    buffer = io.BytesIO()
    doc = SimpleDocTemplate(
        buffer, 
        pagesize=(A4[1], A4[0]),  # Landscape
        leftMargin=50,
        rightMargin=50,
        topMargin=50,
        bottomMargin=50
    )
    
    styles = getSampleStyleSheet()
    story = []
    
    # Create custom styles
    title_style = styles['Heading1']
    title_style.textColor = colors.darkblue
    title_style.alignment = 1  # Center alignment
    
    section_style = ParagraphStyle(
        'SectionStyle',
        parent=styles['Heading2'],
        textColor=colors.darkblue,
        spaceAfter=6
    )
    
    item_style = ParagraphStyle(
        'ItemStyle',
        parent=styles['Normal'],
        fontSize=11,
        leading=14,
        fontName='Helvetica-Bold'
    )
    
    subitem_style = ParagraphStyle(
        'SubItemStyle',
        parent=styles['Normal'],
        fontSize=10,
        leading=12,
        leftIndent=20
    )
    
    # Add title
    story.append(Paragraph("Cutting-Edge ML Outline (ReportLab)", title_style))
    story.append(Spacer(1, 20))
    
    # Process markdown content
    left_column, right_column = markdown_to_pdf_content(markdown_text)
    
    # Prepare data for table
    left_cells = []
    for item in left_column:
        if isinstance(item, str) and item.startswith('<b>'):
            text = item.replace('<b>', '').replace('</b>', '')
            left_cells.append(Paragraph(text, section_style))
        elif isinstance(item, list):
            main_item, sub_items = item
            left_cells.append(Paragraph(main_item, item_style))
            for sub_item in sub_items:
                left_cells.append(Paragraph(sub_item, subitem_style))
        else:
            left_cells.append(Paragraph(item, item_style))
    
    right_cells = []
    for item in right_column:
        if isinstance(item, str) and item.startswith('<b>'):
            text = item.replace('<b>', '').replace('</b>', '')
            right_cells.append(Paragraph(text, section_style))
        elif isinstance(item, list):
            main_item, sub_items = item
            right_cells.append(Paragraph(main_item, item_style))
            for sub_item in sub_items:
                right_cells.append(Paragraph(sub_item, subitem_style))
        else:
            right_cells.append(Paragraph(item, item_style))
    
    # Make columns equal length
    max_cells = max(len(left_cells), len(right_cells))
    left_cells.extend([""] * (max_cells - len(left_cells)))
    right_cells.extend([""] * (max_cells - len(right_cells)))
    
    # Create table data
    table_data = list(zip(left_cells, right_cells))
    
    # Calculate column widths
    col_width = (A4[1] - 120) / 2.0
    
    # Create and style table
    table = Table(table_data, colWidths=[col_width, col_width])
    table.setStyle(TableStyle([
        ('VALIGN', (0, 0), (-1, -1), 'TOP'),
        ('ALIGN', (0, 0), (0, -1), 'LEFT'),
        ('ALIGN', (1, 0), (1, -1), 'LEFT'),
        ('BACKGROUND', (0, 0), (-1, -1), colors.white),
        ('GRID', (0, 0), (-1, -1), 0.5, colors.white),
        ('LINEAFTER', (0, 0), (0, -1), 1, colors.grey),
    ]))
    
    story.append(table)
    doc.build(story)
    buffer.seek(0)
    return buffer.getvalue()

# Streamlit UI
st.title("πŸš€ Cutting-Edge ML Outline Generator")

if st.button("Generate Main PDF"):
    with st.spinner("Generating PDF..."):
        pdf_bytes = create_main_pdf(ml_markdown)
        st.download_button(
            label="Download Main PDF",
            data=pdf_bytes,
            file_name="ml_outline.pdf",
            mime="application/pdf"
        )
        base64_pdf = base64.b64encode(pdf_bytes).decode('utf-8')
        pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="100%" height="400px" type="application/pdf">'
        st.markdown(pdf_display, unsafe_allow_html=True)
        st.success("PDF generated successfully!")