awacke1 commited on
Commit
89aa362
·
1 Parent(s): 3dd6d81

Create new file

Browse files
Files changed (1) hide show
  1. rhyme-with-ai/rhyme_generator.py +175 -0
rhyme-with-ai/rhyme_generator.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import List
3
+
4
+ import numpy as np
5
+ import tensorflow as tf
6
+ from transformers import BertTokenizer, TFAutoModelForMaskedLM
7
+
8
+ from rhyme_with_ai.token_weighter import TokenWeighter
9
+ from rhyme_with_ai.utils import pairwise
10
+
11
+
12
+ class RhymeGenerator:
13
+ def __init__(
14
+ self,
15
+ model: TFAutoModelForMaskedLM,
16
+ tokenizer: BertTokenizer,
17
+ token_weighter: TokenWeighter = None,
18
+ ):
19
+ """Generate rhymes.
20
+ Parameters
21
+ ----------
22
+ model : Model for masked language modelling
23
+ tokenizer : Tokenizer for model
24
+ token_weighter : Class that weighs tokens
25
+ """
26
+
27
+ self.model = model
28
+ self.tokenizer = tokenizer
29
+ if token_weighter is None:
30
+ token_weighter = TokenWeighter(tokenizer)
31
+ self.token_weighter = token_weighter
32
+ self._logger = logging.getLogger(__name__)
33
+
34
+ self.tokenized_rhymes_ = None
35
+ self.position_probas_ = None
36
+
37
+ # Easy access.
38
+ self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
39
+ self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
40
+ self.mask_token_id = self.tokenizer.mask_token_id
41
+
42
+ def start(self, query: str, rhyme_words: List[str]) -> None:
43
+ """Start the sentence generator.
44
+ Parameters
45
+ ----------
46
+ query : Seed sentence
47
+ rhyme_words : Rhyme words for next sentence
48
+ """
49
+ # TODO: What if no content?
50
+ self._logger.info("Got sentence %s", query)
51
+ tokenized_rhymes = [
52
+ self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
53
+ ]
54
+ # Make same length.
55
+ self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
56
+ tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
57
+ )
58
+ p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
59
+ self.position_probas_ = p / p.sum(1).reshape(-1, 1)
60
+
61
+ def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
62
+ """Initialize the rhymes.
63
+ * Tokenize input
64
+ * Append a comma if the sentence does not end in it (might add better predictions as it
65
+ shows the two sentence parts are related)
66
+ * Make second line as long as the original
67
+ * Add a period
68
+ Parameters
69
+ ----------
70
+ query : First line
71
+ rhyme_word : Last word for second line
72
+ Returns
73
+ -------
74
+ Tokenized rhyme lines
75
+ """
76
+
77
+ query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
78
+ rhyme_word_token_ids = self.tokenizer.encode(
79
+ rhyme_word, add_special_tokens=False
80
+ )
81
+
82
+ if query_token_ids[-1] != self.comma_token_id:
83
+ query_token_ids.append(self.comma_token_id)
84
+
85
+ magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
86
+ return (
87
+ query_token_ids
88
+ + [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
89
+ + rhyme_word_token_ids
90
+ + [self.period_token_id]
91
+ )
92
+
93
+ def mutate(self):
94
+ """Mutate the current rhymes.
95
+ Returns
96
+ -------
97
+ Mutated rhymes
98
+ """
99
+ self.tokenized_rhymes_ = self._mutate(
100
+ self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
101
+ )
102
+
103
+ rhymes = []
104
+ for i in range(len(self.tokenized_rhymes_)):
105
+ rhymes.append(
106
+ self.tokenizer.convert_tokens_to_string(
107
+ self.tokenizer.convert_ids_to_tokens(
108
+ self.tokenized_rhymes_[i], skip_special_tokens=True
109
+ )
110
+ )
111
+ )
112
+ return rhymes
113
+
114
+ def _mutate(
115
+ self,
116
+ tokenized_rhymes: np.ndarray,
117
+ position_probas: np.ndarray,
118
+ token_id_probas: np.ndarray,
119
+ ) -> np.ndarray:
120
+
121
+ replacements = []
122
+ for i in range(tokenized_rhymes.shape[0]):
123
+ mask_idx, masked_token_ids = self._mask_token(
124
+ tokenized_rhymes[i], position_probas[i]
125
+ )
126
+ tokenized_rhymes[i] = masked_token_ids
127
+ replacements.append(mask_idx)
128
+
129
+ predictions = self._predict_masked_tokens(tokenized_rhymes)
130
+
131
+ for i, token_ids in enumerate(tokenized_rhymes):
132
+ replace_ix = replacements[i]
133
+ token_ids[replace_ix] = self._draw_replacement(
134
+ predictions[i], token_id_probas, replace_ix
135
+ )
136
+ tokenized_rhymes[i] = token_ids
137
+
138
+ return tokenized_rhymes
139
+
140
+ def _mask_token(self, token_ids, position_probas):
141
+ """Mask line and return index to update."""
142
+ token_ids = self._mask_repeats(token_ids, position_probas)
143
+ ix = self._locate_mask(token_ids, position_probas)
144
+ token_ids[ix] = self.mask_token_id
145
+ return ix, token_ids
146
+
147
+ def _locate_mask(self, token_ids, position_probas):
148
+ """Update masks or a random token."""
149
+ if self.mask_token_id in token_ids:
150
+ # Already masks present, just return the last.
151
+ # We used to return thee first but this returns worse predictions.
152
+ return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
153
+ return np.random.choice(range(len(position_probas)), p=position_probas)
154
+
155
+ def _mask_repeats(self, token_ids, position_probas):
156
+ """Repeated tokens are generally of less quality."""
157
+ repeats = [
158
+ ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
159
+ ]
160
+ for ii in repeats:
161
+ if position_probas[ii] > 0:
162
+ token_ids[ii] = self.mask_token_id
163
+ if position_probas[ii + 1] > 0:
164
+ token_ids[ii + 1] = self.mask_token_id
165
+ return token_ids
166
+
167
+ def _predict_masked_tokens(self, tokenized_rhymes):
168
+ return self.model(tf.constant(tokenized_rhymes))[0]
169
+
170
+ def _draw_replacement(self, predictions, token_probas, replace_ix):
171
+ """Get probability, weigh and draw."""
172
+ # TODO (HG): Can't we softmax when calling the model?
173
+ probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
174
+ probas /= probas.sum()
175
+ return np.random.choice(range(len(probas)), p=probas)