Spaces:
Runtime error
Runtime error
import copy | |
import logging | |
import transformers | |
import rhyme_with_ai | |
from typing import List | |
import streamlit as st | |
from transformers import BertTokenizer, TFAutoModelForMaskedLM | |
from rhyme_with_ai.utils import color_new_words, sanitize | |
from rhyme_with_ai.rhyme import query_rhyme_words | |
from rhyme_with_ai.rhyme_generator import RhymeGenerator | |
DEFAULT_QUERY = "Machines will take over the world soon" | |
N_RHYMES = 10 | |
LANGUAGE = st.sidebar.radio("Language", ["english", "dutch"],0) | |
if LANGUAGE == "english": | |
MODEL_PATH = "bert-large-cased-whole-word-masking" | |
ITER_FACTOR = 5 | |
elif LANGUAGE == "dutch": | |
MODEL_PATH = "GroNLP/bert-base-dutch-cased" | |
ITER_FACTOR = 10 # Faster model | |
else: | |
raise NotImplementedError(f"Unsupported language ({LANGUAGE}) expected 'english' or 'dutch'.") | |
def main(): | |
st.markdown( | |
"<sup>Created with " | |
"[Datamuse](https://www.datamuse.com/api/), " | |
"[Mick's rijmwoordenboek](https://rijmwoordenboek.nl), " | |
"[Hugging Face](https://huggingface.co/), " | |
"[Streamlit](https://streamlit.io/) and " | |
"[App Engine](https://cloud.google.com/appengine/)." | |
" Read our [blog](https://blog.godatadriven.com/rhyme-with-ai) " | |
"or check the " | |
"[source](https://github.com/godatadriven/rhyme-with-ai).</sup>", | |
unsafe_allow_html=True, | |
) | |
st.title("Rhyme with AI") | |
query = get_query() | |
if not query: | |
query = DEFAULT_QUERY | |
rhyme_words_options = query_rhyme_words(query, n_rhymes=N_RHYMES,language=LANGUAGE) | |
if rhyme_words_options: | |
logging.getLogger(__name__).info("Got rhyme words: %s", rhyme_words_options) | |
start_rhyming(query, rhyme_words_options) | |
else: | |
st.write("No rhyme words found") | |
def get_query(): | |
q = sanitize( | |
st.text_input("Write your first line and press ENTER to rhyme:", DEFAULT_QUERY) | |
) | |
if not q: | |
return DEFAULT_QUERY | |
return q | |
def start_rhyming(query, rhyme_words_options): | |
st.markdown("## My Suggestions:") | |
progress_bar = st.progress(0) | |
status_text = st.empty() | |
max_iter = len(query.split()) * ITER_FACTOR | |
rhyme_words = rhyme_words_options[:N_RHYMES] | |
model, tokenizer = load_model(MODEL_PATH) | |
sentence_generator = RhymeGenerator(model, tokenizer) | |
sentence_generator.start(query, rhyme_words) | |
current_sentences = [" " for _ in range(N_RHYMES)] | |
for i in range(max_iter): | |
previous_sentences = copy.deepcopy(current_sentences) | |
current_sentences = sentence_generator.mutate() | |
display_output(status_text, query, current_sentences, previous_sentences) | |
progress_bar.progress(i / (max_iter - 1)) | |
st.balloons() | |
def load_model(model_path): | |
return ( | |
TFAutoModelForMaskedLM.from_pretrained(model_path), | |
BertTokenizer.from_pretrained(model_path), | |
) | |
def display_output(status_text, query, current_sentences, previous_sentences): | |
print_sentences = [] | |
for new, old in zip(current_sentences, previous_sentences): | |
formatted = color_new_words(new, old) | |
after_comma = "<li>" + formatted.split(",")[1][:-2] + "</li>" | |
print_sentences.append(after_comma) | |
status_text.markdown( | |
query + ",<br>" + "".join(print_sentences), unsafe_allow_html=True | |
) | |
if __name__ == "__main__": | |
logging.basicConfig(level=logging.INFO) | |
main() |